首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the distribution of intermediate filaments in early quail embryos in order to determine whether these cytoskeletal proteins play a role in the epithelial-mesenchymal transitions that commonly occur during embryogenesis, e.g., the separation of neural-crest cells from the neural epithelium. The distribution of cytokeratins, vimentin, and desmin was examined in frozen sections of quail embryos at stages during which dramatic reorganizations of tissues take place. All embryonic tissues were found to contain either vimentin or cytokeratins, but the distribution of these cytoskeletal proteins was characteristic neither of the cellular organization (e.g., epithelium vs. mesenchyme) nor of the germ-layer derivation of the tissues. Cytokeratin monoclonal antibodies stained most embryonic epithelia (defined here as being sheet-like tissue with an underlying basement membrane), including epidermis and extraembryonic membranes derived in part from the ectoderm, splanchnopleure and kidney tubules derived from mesoderm, and endoderm. Cytokeratin antibodies did not stain some epithelia, including the neural tube, neural plate, and dermatome/myotome. Whereas the cytokeratin antibodies exclusively stained epithelia, the vimentin antibodies labeled both epithelial (the neural tube, dermatome/myotome, and somatic and splanchnic mesoderm) and mesenchymal tissues (the sclerotome and neural-crest cells), regardless of their germ-layer derivation. In early embryos, antibodies against desmin only stained the myotome and, in 4-day embryos, the heart and mesenchyme around the pharynx. As the distribution of intermediate-filament types did not reflect tissue organization or germ-layer derivation, we propose that the distribution of intermediate filaments in early avian embryos reflects the motile capacity of an embryonic cell and/or the presence of specialized cell junctions, i.e., desmosomes.  相似文献   

2.
3.
Abstract. The ultrastructure of the day 8.5 mouse embryo has been studied by transmission electron microscopy, with special emphasis on the primary mesenchymal cells and their interaction with cells of the embryonic ectoderm and the proximal endoderm. The organization of the two polar epithelial cell layers (embryonic ectoderm and proximal endoderm), the isolated cells of the distal endoderm and the primary mesenchymal cells is described. Primary mesenchymal cells are different from embryonic ectoderm cells, from which they are derived, not only by the absence of desmosomes and intermediate-sized filaments of the cytokeratin type but also by their variable morphology not exhibiting stable polar architecture, and their numerous cytoplasmic processes which make contacts with the basal lamina of the ectoderm, the basal cell surface of the proximal endoderm, and other mesenchymal cells. Over most of the embryo the embryonic ectoderm is covered by a typical basal lamina, except for certain regions that are frequently characterized by cytoplasmic projections ('blebs') from the basal cell surface membrane. In contrast, the basal surface of the proximal endoderm is not covered by a continuous basal lamina and reveals mushroom-like protrusions of the cortical cytoplasm. Junctions between primary mesenchymal cells are numerous and include adhaerens-type formations of various sizes as well as gap junctions. Occasionally, a special type of junction between mesenchymal cells and embryonic ectoderm has been found, resulting in local interruptions of the basal lamina. The observations are discussed in relation to possible mechanisms of mesoderm formation and the drastic changes of cell character that accompany this process, including cytoskeletal changes such as the disappearance of cytokeratin filaments and the expression of vimentin.  相似文献   

4.
The ultrastructure of the day 8.5 mouse embryo has been studied by transmission electron microscopy, with special emphasis on the primary mesenchymal cells and their interaction with cells of the embryonic ectoderm and the proximal endoderm. The organization of the two polar epithelial cell layers (embryonic ectoderm and proximal endoderm), the isolated cells of the distal endoderm and the primary mesenchymal cells is described. Primary mesenchymal cells are different from embryonic ectoderm cells, from which they are derived, not only by the absence of desmosomes and intermediate-sized filaments of the cytokeratin type but also by their variable morphology not exhibiting stable polar architecture, and their numerous cytoplasmic processes which make contacts with the basal lamina of the ectoderm, the basal cell surface of the proximal endoderm, and other mesenchymal cells. Over most of the embryo the embryonic ectoderm is covered by a typical basal lamina, except for certain regions that are frequently characterized by cytoplasmic projections ("blebs') from the basal cell surface membrane. In contrast, the basal surface of the proximal endoderm is not covered by a continuous basal lamina and reveals mushroom-like protrusions of the cortical cytoplasm. Junctions between primary mesenchymal cells are numerous and include adhaerens-type formations of various sizes as well as gap junctions. Occasionally, a special type of junction between mesenchymal cells and embryonic ectoderm has been found, resulting in local interruptions of the basal lamina. The observations are discussed in relation to possible mechanisms of mesoderm formation and the drastic changes of cell character that accompany this process, including cytoskeletal changes such as the disappearance of cytokeratin filaments and the expression of vimentin.  相似文献   

5.
Summary This study aims to describe the regulation of vimentin and cytokeratin expression during differentiation of primary mesenchymal cells in the 7 day old rabbit embryo; unusual intermediate filament protein expression patterns have already been found in this species at later embryonic stages. Double-labelling indirect immunofluorescence assays with a panel of monoclonal intermediate filament antibodies are performed on frozen sections and compared with aldehyde-fixed plastic-embedded tissues. The histological part of the study, serving as a basis for the topographical orientation in the immunostained frozen sections, emphasises many similarities between the primitive streak embryos of the rabbit and the chick. The immunohistochemical analysis reveals cytokeratin expression to varying degrees in all germ layers. Vimentin expression, always in combination with cytokeratin expression, is found in a few cells of the ectoderm, endoderm and lateral mesoderm, but not in the primary mesenchymal cells of either the primitive node or the primitive streak. The results are discussed in relation to recent experimental findings on differentiation and morphogenetic processes in the primitive streak embryo. While these complex expression patterns make it seem unlikely that intermediate filament protein subtypes are expressed independently of cellular function during development, no indication can be found for a relation between vimentin expression and the morphogenetic changes thought to be important during mesoderm formation.Supported by the Deutsche Forschungsgemeinschaft (Wa 359-9) and by the Netherlands Cancer Foundation Offprint requests to: C. Viebahn  相似文献   

6.
During embryogenesis the central and peripheral nervous systems arise from a neural precursor population, neurectoderm, formed during gastrulation. We demonstrate the differentiation of mouse embryonic stem cells to neurectoderm in culture, in a manner which recapitulates embryogenesis, with the sequential and homogeneous formation of primitive ectoderm, neural plate and neural tube. Formation of neurectoderm occurs in the absence of extraembryonic endoderm or mesoderm and results in a stratified epithelium of cells with morphology, gene expression and differentiation potential consistent with positionally unspecified neural tube. Differentiation of this population to homogeneous populations of neural crest or glia was also achieved. Neurectoderm formation in culture allows elucidation of signals involved in neural specification and generation of implantable cell populations for therapeutic use.  相似文献   

7.
8.
9.
We applied immunohistochemical techniques and gel electrophoresis to examine the distribution of intermediate filaments in human fetal oral epithelium and the epithelia of the human enamel organ. Both methods demonstrated that human enamel epithelia contain cytokeratins 5, 14, and 17, which are typical of the basal cells of stratified epithelia, as well as smaller quantities of cytokeratins 7, 8, 19, and in trace amounts 18, which are characteristic components of simple epithelial cells. In the external enamel epithelium and stellate-reticulum cells, most of these components appeared to be simultaneously expressed. In contrast, the parental oral epithelium was negative for cytokeratin 7, thus indicating possible "neoexpression" during the course of tooth formation. Immunohistochemical procedures using various monoclonal antibodies against vimentin revealed the transient coexpression of vimentin and cytokeratins in the external enamel epithelium and in stellate-reticulum cells during enamel development. The significance of the coexpression of cytokeratins and vimentin is discussed in relation to previous findings obtained in other normal tissues and in the light of the functional processes characteristic of these epithelia.  相似文献   

10.
After completion of gastrulation, typical vertebrate embryos consist of three cell sheets, called germ layers. The outer layer, the ectoderm, which produces the cells of the epidermis and the nervous system; the inner layer, the endoderm, producing the lining of the digestive tube and its associated organs (pancreas, liver, lungs etc.) and the middle layer, the mesoderm, which gives rise to several organs (heart, kidney, gonads), connective tissues (bone, muscles, tendons, blood vessels), and blood cells. The formation of the germ layers is one of the earliest embryonic events to subdivide multicellular embryos into a few compartments. In Xenopus laevis, the spatial domains of three germ layers are largely separated along the animal-vegetal axis even before gastrulation; ectoderm in the animal pole region; mesoderm in the equatorial region and endoderm in the vegetal pole region. In this review, we summarise the recent advances in our understanding of the formation of the germ layers in Xenopus laevis.  相似文献   

11.
In higher vertebrates, the paraxial mesoderm undergoes a mesenchymal to epithelial transformation to form segmentally organised structures called somites. Experiments have shown that signals originating from the ectoderm overlying the somites or from midline structures are required for the formation of the somites, but their identity has yet to be determined. Wnt6 is a good candidate as a somite epithelialisation factor from the ectoderm since it is expressed in this tissue. In this study, we show that injection of Wnt6-producing cells beneath the ectoderm at the level of the segmental plate or lateral to the segmental plate leads to the formation of numerous small epithelial somites. Ectopic expression of Wnt6 leads to sustained expression of markers associated with the epithelial somites and reduced or delayed expression of markers associated with mesenchymally organised somitic tissue. More importantly, we show that Wnt6-producing cells are able to rescue somite formation after ectoderm ablation. Furthermore, injection of Wnt6-producing cells following the isolation of the neural tube/notochord from the segmental plate was able to rescue somite formation at both the structural (epithelialisation) and molecular level, as determined by the expression of marker genes like Paraxis or Pax-3. We show that Wnts are indeed responsible for the epithelialisation of somites by applying Wnt antagonists, which result in the segmental plate being unable to form somites. These results show that Wnt6, the only known member of this family to be localised to the chick paraxial ectoderm, is able to regulate the development of epithelial somites and that cellular organisation is pivotal in the execution of the differentiation programmes. We propose a model in which the localisation of Wnt6 and its antagonists regulates the process of epithelialisation in the paraxial mesoderm.  相似文献   

12.
13.
BMPRIA is a receptor for bone morphogenetic proteins with high affinity for BMP2 and BMP4. Mouse embryos lacking Bmpr1a fail to gastrulate, complicating studies on the requirements for BMP signaling in germ layer development. Recent work shows that BMP4 produced in extraembryonic tissues initiates gastrulation. Here we use a conditional allele of Bmpr1a to remove BMPRIA only in the epiblast, which gives rise to all embryonic tissues. Resulting embryos are mosaics composed primarily of cells homozygous null for Bmpr1a, interspersed with heterozygous cells. Although mesoderm and endoderm do not form in Bmpr1a null embryos, these tissues are present in the mosaics and are populated with mutant cells. Thus, BMPRIA signaling in the epiblast does not restrict cells to or from any of the germ layers. Cells lacking Bmpr1a also contribute to surface ectoderm; however, from the hindbrain forward, little surface ectoderm forms and the forebrain is enlarged and convoluted. Prechordal plate, early definitive endoderm, and anterior visceral endoderm appear to be expanded, likely due to defective morphogenesis. These data suggest that the enlarged forebrain is caused in part by increased exposure of the ectoderm to signaling sources that promote anterior neural fate. Our results reveal critical roles for BMP signaling in endodermal morphogenesis and ectodermal patterning.  相似文献   

14.
Neurulation, formation of the neural tube, requires both intrinsic forces (i.e., those generated within the neural plate) and extrinsic forces (i.e., those generated outside the neural plate in adjacent tissues), but the precise origin of these forces is unclear. In this study, we addressed the question of which tissue produces the major extrinsic force driving bending of the neural plate. We have previously shown that 1) extrinsic forces are required for bending and 2) such forces are generated lateral to the neural plate. Three tissues flank the neural plate prior to its bending: surface epithelium, mesoderm, and endoderm. In the present study, we removed two of these layers, namely, the endoderm and mesoderm, underlying and lateral to the neural plate; bending still occurred, often with complete formation of a neural tube, although the latter usually rotated toward the side of tissue depletion. These results suggest that the surface epithelium, the only tissue remaining after microsurgery, provides the major extrinsic force for bending of the neural plate and that the mesoderm (and perhaps endoderm) stabilizes the neuraxis, maintaining its proper orientation and position on the midline.  相似文献   

15.
Claudins are a family of proteins that are localized to tight junctions at the apical surface of epithelial cell layers. Over 24 family members have been identified in vertebrates. Despite being well-studied with respect to their function in tight junction selectivity and permeability, the embryonic expression patterns of most claudin family members have not been thoroughly investigated. Here, we report the cloning and expression pattern of a novel chick claudin family member that is most closely related to human claudin-1. Chick claudin-1 was expressed throughout the ectoderm of stage 4-6 chick embryos. Claudin-1 expression was particularly high in the neural epithelium and open neural tube, but decreased as the neural tube closed. High levels of claudin-1 expression were also observed in the developing otic vesicle, nasal placode, ectodermal component of the pharyngeal arches, and in the apical ectodermal ridge of the limb bud from stage 17 onwards. Claudin-1 expression was also detected in scleral papillae, feather buds and migrating primordial germ cells. Lower levels of claudin-1 expression were observed in the endoderm, the ventral pharynx, and several of its derivatives including the bronchi, developing lung epithelium, esophagus, and gut. Claudin-1 expression was detected in the nephric duct and the mesonephros, which are epithelialized derivatives of the intermediate mesoderm, but not in any other mesodermal derivates, including the heart, somites and developing muscle. With the exception of the migrating primordial germ cells and the primitive streak, all other tissues that expressed significant levels of claudin-1 were epithelialized.  相似文献   

16.
Experimental studies and field surveys suggest that embryonic loss during the first 6 weeks of gestation is a common occurrence in the mare. During the first 2 weeks of development, a number of important cell differentiation events must occur to yield a viable embryo proper containing all three major germ layers (ectoderm, mesoderm, and endoderm). Because formation of the mesoderm and primitive streak are critical to the development of the embryo proper, but have not been described extensively in the horse, we examined tissue development and differentiation in early horse conceptuses using a combination of stereomicroscopy, light microscopy, and immunohistochemistry. Ingression of epiblast cells to form the mesoderm was first observed on day 12 after ovulation; by Day 18 the conceptus had completed a series of differentiation events and morphologic changes that yielded an embryo proper with a functional circulation. While mesoderm precursor cells were present from Day 12 after ovulation, vimentin expression was not detectable until Day 14, suggesting that initial differentiation of mesoderm from the epiblast in the horse is independent of this intermediate filament protein, a situation that contrasts with other domestic species. Development of the other major embryonic germ layers was similar to other species. For example, ectodermal cells expressed cytokeratins, and there was a clear demarcation in staining intensity between embryonic ectoderm and trophectoderm. Hypoblast showed clear α1-fetoprotein expression from as early as Day 10 after ovulation, and seemed to be the only source of α1-fetoprotein in the early conceptus.  相似文献   

17.
Ectodermal Wnt6 plays an important role during development of the somites and the lateral plate mesoderm. In the course of development, Wnt6 expression shows a dynamic pattern. At the level of the segmental plate and the epithelial somites, Wnt6 is expressed in the entire ectoderm overlying the neural tube, the paraxial mesoderm and the lateral plate mesoderm. With somite maturation, expression becomes restricted to the lateral ectoderm covering the ventrolateral lip of the dermomyotome and the lateral plate mesoderm. To study the regulation of Wnt6 expression, we have interfered with neighboring signaling pathways. We show that Wnt1 and Wnt3a signaling from the neural tube inhibit Wnt6 expression in the medial surface ectoderm via dermomyotomal Wnt11. We demonstrate that Wnt11 is an epithelialization factor acting on the medial dermomyotome, and present a model suggesting Wnt11 and Wnt6 as factors maintaining the epithelial nature of the dorsomedial and ventrolateral lips of the dermomyotome, respectively, during dermomyotomal growth.  相似文献   

18.
19.
Summary Mab 113F4, a monoclonal antibody recognizing an antigen in the outer synaptic layer of the chick neural retina, also recognizes an antigen appearing in all three germ layers of the gastrulating chick embryo. However, as neurulation proceeds, the antigen is down-regulated in three distinct patterns. First, the antigen is lost specifically from those trunk ectodermal cells destined to form the neural plate and, later, the neural tube. It remains absent from any neural derivative until day 13 when it appears in the outer synaptic layer of the neural retina, coincident with synaptogenesis in this region. Second, the entirety of the head ectoderm loses this antigen as the head lifts off the blastoderm. This down-regulation is followed later by a similar loss of antigen expression in the trunk ectoderm. Third, expression in the mesoderm becomes limited to the lateral plate and extraembryonic epithelia. Endodermal derivatives continue to express the antigen throughout development. Antigen 113F4 is localized within the cytoplasm and is organized in a fibrillar pattern. The intracellular localization of this antigen and its characteristic spatio-temporal tissue distribution are consistent with the antigen being a cytokeratin or cytokeratin-related antigen. The changes in tissue distribution suggest a possible role in tissue modelling in response to inductive interactions during development.  相似文献   

20.
Mab 113F4, a monoclonal antibody recognizing an antigen in the outer synaptic layer of the chick neural retina, also recognizes an antigen appearing in all three germ layers of the gastrulating chick embryo. However, as neurulation proceeds, the antigen is down-regulated in three distinct patterns. First, the antigen is lost specifically from those trunk ectodermal cells destined to form the neural plate and, later, the neural tube. It remains absent from any neural derivative until day 13 when it appears in the outer synaptic layer of the neural retina, coincident with synaptogenesis in this region. Second, the entirety of the head ectoderm loses this antigen as the head lifts off the blastoderm. This down-regulation is followed later by a similar loss of antigen expression in the trunk ectoderm. Third, expression in the mesoderm becomes limited to the lateral plate and extraembryonic epithelia. Endodermal derivatives continue to express the antigen throughout development. Antigen 113F4 is localized within the cytoplasm and is organized in a fibrillar pattern. The intracellular localization of this antigen and its characteristic spatio-temporal tissue distribution are consistent with the antigen being a cytokeratin or cytokeratin-related antigen. The changes in tissue distribution suggest a possible role in tissue modelling in response to inductive interactions during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号