首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PINCH is a widely expressed and evolutionarily conserved protein comprising primarily five LIM domains, which are cysteine-rich consensus sequences implicated in mediating protein-protein interactions. We report here that PINCH is a binding protein for integrin-linked kinase (ILK), an intracellular serine/threonine protein kinase that plays important roles in the cell adhesion, growth factor, and Wnt signaling pathways. The interaction between ILK and PINCH has been consistently observed under a variety of experimental conditions. They have interacted in yeast two-hybrid assays, in solution, and in solid-phase-based binding assays. Furthermore, ILK, but not vinculin or focal adhesion kinase, has been coisolated with PINCH from mammalian cells by immunoaffinity chromatography, indicating that PINCH and ILK associate with each other in vivo. The PINCH-ILK interaction is mediated by the N-terminal-most LIM domain (LIM1, residues 1 to 70) of PINCH and multiple ankyrin (ANK) repeats located within the N-terminal domain (residues 1 to 163) of ILK. Additionally, biochemical studies indicate that ILK, through the interaction with PINCH, is capable of forming a ternary complex with Nck-2, an SH2/SH3-containing adapter protein implicated in growth factor receptor kinase and small GTPase signaling pathways. Finally, we have found that PINCH is concentrated in peripheral ruffles of cells spreading on fibronectin and have detected clusters of PINCH that are colocalized with the alpha5beta1 integrins. These results demonstrate a specific protein recognition mechanism utilizing a specific LIM domain and multiple ANK repeats and suggest that PINCH functions as an adapter protein connecting ILK and the integrins with components of growth factor receptor kinase and small GTPase signaling pathways.  相似文献   

2.
Nck-2 is a ubiquitously expressed adaptor protein comprising primarily three N-terminal SH3 domains and one C-terminal SH2 domain. We report here that Nck-2 interacts with focal adhesion kinase (FAK), a cytoplasmic protein tyrosine kinase critically involved in the cellular control of motility. Using a mutational strategy, we have found that the formation of the Nck-2-FAK complex is mediated by interactions involving multiple SH2 and SH3 domains of Nck-2. The Nck-2 SH2 domain-mediated interaction with FAK is dependent on phosphorylation of Tyr397, a site that is involved in the regulation of cell motility. A fraction of Nck-2 co-localizes with FAK at cell periphery in spreading cells. Furthermore, overexpression of Nck-2 modestly decreased cell motility, whereas overexpression of a mutant form of Nck-2 containing the SH2 domain but lacking the SH3 domains significantly promoted cell motility. These results identify a novel interaction between Nck-2 and FAK and suggest a role of Nck-2 in the modulation of cell motility.  相似文献   

3.
PINCH is an adaptor protein found in focal adhesions, large cellular complexes that link extracellular matrix to the actin cytoskeleton. PINCH, which contains an array of five LIM domains, has been implicated as a platform for multiple protein-protein interactions that mediate integrin signaling within focal adhesions. We had previously characterized the LIM1 domain of PINCH, which functions in focal adhesions by binding specifically to integrin-linked kinase. Using NMR spectroscopy, we show here that the PINCH LIM4 domain, while maintaining the conserved LIM scaffold, recognizes the third SH3 domain of another adaptor protein, Nck2 (also called Nckbeta or Grb4), in a manner distinct from that of the LIM1 domain. Point mutation of LIM residues in the SH3-binding interface disrupted LIM-SH3 interaction and substantially impaired localization of PINCH to focal adhesions. These data provide novel structural insight into LIM domain-mediated protein-protein recognition and demonstrate that the PINCH-Nck2 interaction is an important component of the focal adhesion assembly during integrin signaling.  相似文献   

4.
Tu Y  Kucik DF  Wu C 《FEBS letters》2001,491(3):193-199
Nck-2 is a newly identified adapter protein comprising three N-terminal SH3 domains and one C-terminal SH2 domain. We have identified in a yeast two-hybrid screen DOCK180, a signaling protein implicated in the regulation of membrane ruffling and migration, as a binding protein for Nck-2. Surface plasmon resonance analyses reveal that the second and the third SH3 domains interact with the C-terminal region of DOCK180. The interactions mediated by the individual SH3 domains, however, are much weaker than that of the full length Nck-2. Furthermore, a point mutation that inactivates the second or the third SH3 domain dramatically reduced the interaction of Nck-2 with DOCK180, suggesting that both SH3 domains contribute to the DOCK180 binding. A major Nck-2 binding site, which is recognized primarily by the third SH3 domain, has been mapped to residues 1819-1836 of DOCK180. Two additional, albeit much weaker, Nck-2 SH3 binding sites are located to DOCK180 residues 1793-1810 and 1835-1852 respectively. Consistent with the mutational studies, kinetic analyses by surface plasmon resonance suggest that two binding events with equilibrium dissociation constants of 4.15+/-1.9x10(-7) M and 3.24+/-1.9x10(-9) M mediate the binding of GST-Nck-2 to GST fusion protein containing the C-terminal region of DOCK180. These studies identify a novel interaction between Nck-2 and DOCK180. Furthermore, they provide a detailed analysis of a protein complex formation mediated by multiple SH3 domains revealing that tandem SH3 domains significantly enhance the weak interactions mediated by each individual SH3 domain.  相似文献   

5.
PINCH is a recently identified adaptor protein that comprises an array of five LIM domains. PINCH functions through LIM-mediated protein-protein interactions that are involved in cell adhesion, growth, and differentiation. The LIM1 domain of PINCH interacts with integrin-linked kinase (ILK), thereby mediating focal adhesions via a specific integrin/ILK signaling pathway. We have solved the NMR structure of the PINCH LIM1 domain and characterized its binding to ILK. LIM1 contains two contiguous zinc fingers of the CCHC and CCCH types and adopts a global fold similar to that of functionally distinct LIM domains from cysteine-rich protein and cysteine-rich intestinal protein families with CCHC and CCCC zinc finger types. Gel-filtration and NMR experiments demonstrated a 1:1 complex between PINCH LIM1 and the ankyrin repeat domain of ILK. A chemical shift mapping experiment identified regions in PINCH LIM1 that are important for interaction with ILK. Comparison of surface features between PINCH LIM1 and other functionally different LIM domains indicated that the LIM motif might have a highly variable mode in recognizing various target proteins.  相似文献   

6.
7.
PTP2C (also known as Syp/SH-PTP2/PTP1D) is a soluble protein tyrosine phosphatase present in most cell types. It interacts directly with activated PDGF receptor via its SH2 domains, which results in its phosphorylation on tyrosine residue(s). The phosphorylated PTP2C in turn binds to the SH2 domain of GRB2, serving as an adaptor in the transduction of mitogenic signals from the growth factor receptor to the Ras and MAP kinase signaling pathways. We investigated the interaction of PTP2C with the PDGF receptor by examining the localization of both proteins after PDGF stimulation of 293 cells which stably express the human PDGF receptor. In resting cells, transiently expressed PTP2C was distributed throughout the cytoplasm. Upon stimulation with PDGF, PTP2C was translocated from the cytoplasm to membrane ruffles. Immunofluorescence examination revealed that PTP2C colocalized with actin, the PDGF receptors, and hyper-tyrosine-phosphorylated protein(s). Neither deletion of the SH2 domains nor point mutations at either the catalytic site or the major phosphorylation site affected membrane ruffling or the localization of PTP2C to the ruffles of PDGF-stimulated cells. However, the expression of a catalytically inactive mutant PTP2C substantially prolonged ruffling activity following PDGF stimulation. These results suggest that PTP2C is involved in the down-regulation of the membrane ruffling pathway, and in contrast to its positive function in the MAP kinase pathway, the phosphatase activity negatively regulates ruffling activity.  相似文献   

8.
One of the immediate cellular responses to stimulation by various growth factors is the activation of a phosphatidylinositol (PI) 3-kinase. We recently cloned the 85-kDa subunit of PI 3-kinase (p85) from a lambda gt11 expression library, using the tyrosine-phosphorylated carboxy terminus of the epidermal growth factor (EGF) receptor as a probe (E. Y. Skolnik, B. Margolis, M. Mohammadi, E. Lowenstein, R. Fischer, A. Drepps, A. Ullrich, and J. Schlessinger, Cell 65:83-90, 1991). In this study, we have examined the association of p85 with EGF and platelet-derived growth factor (PDGF) receptors and the tyrosine phosphorylation of p85 in 3T3 (HER14) cells in response to EGF and PDGF treatment. Treatment of cells with EGF or PDGF markedly increased the amount of p85 associated with EGF and PDGF receptors. Binding assays with glutathione S-transferase (GST) fusion proteins demonstrated that either Src homology region 2 (SH2) domain of p85 is sufficient for binding to EGF and PDGF receptors and that receptor tyrosine autophosphorylation is required for binding. Binding of a GST fusion protein expressing the N-terminal SH2 domain of p85 (GST-N-SH2) to EGF and PDGF receptors was half-maximally inhibited by 2 and 24 mM phosphotyrosine (P-Tyr), respectively, suggesting that the N-SH2 domain interacts more stably with PDGF receptors than with EGF receptors. The amount of receptor-p85 complex detected in HER14 cells treated with EGF or PDGF. Growth factor treatment also increased the amount of p85 found in anti-PDGF-treated HER14 cells, suggesting that the vast majority of p85 in the anti-P-Tyr fraction is receptor associated but not phosphorylated on tyrosine residues. Only upon transient overexpression of p85 and PDGF receptor did p85 become tyrosine phosphorylated. These are consistent with the hypothesis that p85 functions as an adaptor molecule that targets PI 3-kinase to activated growth factor receptors.  相似文献   

9.
Netrins are a family of secreted proteins that guide the migration of cells and axonal growth cones during development. DCC (deleted in colorectal cancer) is a receptor for netrin-1 implicated in mediating these responses. Here, we show that DCC interacts constitutively with the SH3/SH2 adaptor Nck in commissural neurons. This interaction is direct and requires the SH3 but not SH2 domains of Nck-1. Moreover, both DCC and Nck-1 associate with the actin cytoskeleton, and this association is mediated by DCC. A dominant negative Nck-1 inhibits the ability of DCC to induce neurite outgrowth in N1E-115 cells and to activate Rac1 in fibroblasts in response to netrin-1. These studies provide evidence for an important role of mammalian Nck-1 in a novel signaling pathway from an extracellular guidance cue to changes in the actin-based cytoskeleton responsible for axonal guidance.  相似文献   

10.
The interaction of cells with extracellular matrix recruits multiple proteins to cell-matrix contact sites (e.g. focal and fibrillar adhesions), which connect the extracellular matrix to the actin cytoskeleton and regulate cell shape change, migration, and other cellular processes. We previously identified PINCH, an adaptor protein comprising primarily five LIM domains, as a binding protein for integrin-linked kinase (ILK). In this study, we show that PINCH co-localizes with ILK in both focal adhesions and fibrillar adhesions. Furthermore, we have investigated the molecular basis underlying the targeting of PINCH to the cell-matrix contact sites and the functional significance of the PINCH-ILK interaction. We have found that the N-terminal LIM1 domain, which mediates the ILK binding, is required for the targeting of PINCH to the cell-matrix contact sites. The C-terminal LIM domains, although not absolutely required, play an important regulatory role in the localization of PINCH to cell-matrix contact sites. Inhibition of the PINCH-ILK interaction, either by overexpression of a PINCH N-terminal fragment containing the ILK-binding LIM1 domain or by overexpression of an ILK N-terminal fragment containing the PINCH-binding ankyrin domain, retarded cell spreading, and reduced cell motility. These results suggest that PINCH, through its interaction with ILK, is crucially involved in the regulation of cell shape change and motility.  相似文献   

11.
Signalling proteins such as phospholipase C-gamma (PLC-gamma) or GTPase-activating protein (GAP) of ras contain conserved regions of approximately 100 amino acids termed src homology 2 (SH2) domains. SH2 domains were shown to be responsible for mediating association between signalling proteins and tyrosine-phosphorylated proteins, including growth factor receptors. Nck is an ubiquitously expressed protein consisting exclusively of one SH2 and three SH3 domains. Here we show that epidermal growth factor or platelet-derived growth factor stimulation of intact human or murine cells leads to phosphorylation of Nck protein on tyrosine, serine, and threonine residues. Similar stimulation of Nck phosphorylation was detected upon activation of rat basophilic leukemia RBL-2H3 cells by cross-linking of the high-affinity immunoglobulin E receptors (Fc epsilon RI). Ligand-activated, tyrosine-autophosphorylated platelet-derived growth factor or epidermal growth factor receptors were coimmunoprecipitated with anti-Nck antibodies, and the association with either receptor molecule was mediated by the SH2 domain of Nck. Addition of phorbol ester was also able to stimulate Nck phosphorylation on serine residues. However, growth factor-induced serine/threonine phosphorylation of Nck was not mediated by protein kinase C. Interestingly, approximately fivefold overexpression of Nck in NIH 3T3 cells resulted in formation of oncogenic foci. These results show that Nck is an oncogenic protein and a common target for the action of different surface receptors. Nck probably functions as an adaptor protein which links surface receptors with tyrosine kinase activity to downstream signalling pathways involved in the control of cell proliferation.  相似文献   

12.
We have used a transient expression system and mutant platelet-derived growth factor (PDGF) receptors to study the binding specificities of the Src homology 2 (SH2) regions of the Ras GTPase-activator protein (GAP) and the p85 alpha subunit of phosphatidylinositol 3-kinase (PI3 kinase). A number of fusion proteins, each tagged with an epitope allowing recognition by a monoclonal antibody, were expressed at levels comparable to those of endogenous GAP. Fusion proteins containing the central SH2-SH3-SH2 region of GAP or the C-terminal region of p85 alpha, which includes two SH2 domains, bound to PDGF receptors in response to PDGF stimulation. Both fusion proteins showed the same requirements for tyrosine phosphorylation sites in the PDGF receptor as the full-length proteins from which they were derived, i.e., binding of the GAP fusion protein was reduced by mutation of Tyr-771, and binding of the p85 fusion protein was reduced by mutation of Tyr-740, Tyr-751, or both residues. Fusion proteins containing single SH2 domains from either GAP or p85 alpha did not bind detectably to PDGF receptors in this system, suggesting that two SH2 domains in a single polypeptide cooperate to raise the affinity of binding. The sequence specificities of individual SH2 domains were deduced from the binding properties of fusion proteins containing one SH2 domain from GAP and another from p85. The results suggest that the C-terminal GAP SH2 domain specifies binding to Tyr-771, the C-terminal p85 alpha SH2 domain binds to either Tyr-740 or Tyr-751, and each protein's N-terminal SH2 domain binds to unidentified phosphorylation sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Several receptor-mediated signal transduction pathways, including EGF and IgE receptor pathways, have been proposed to be spatially restricted to plasma membrane microdomains. However, the experimental evidence for signaling events in these microdomains is largely based on biochemical fractionation and immunocytochemical studies and only little is known about their spatial dynamics in living cells. Here we constructed green fluorescent protein–tagged SH2 domains to investigate where and when IgE receptor (FcεRI)–mediated tyrosine phosphorylation occurs in living tumor mast cells. Strikingly, within minutes after antigen addition, tandem SH2 domains from Syk or PLC-γ1 translocated from a uniform cytosolic distribution to punctuate plasma membrane microdomains. Colocalization experiments showed that the microdomains where tyrosine phosphorylation occurred were indistinguishable from those stained by cholera toxin B, a marker for glycosphingolipids. Competitive binding studies with coelectroporated unlabeled Syk, PLC-γ1, and other SH2 domains selectively suppressed the induction of IgE receptor–mediated calcium signals as well as the binding of the fluorescent SH2 domains. This supports the hypothesis that PLC-γ1 and Syk SH2 domains selectively bind to Syk and IgE receptors, respectively. Unlike the predicted prelocalization of EGF receptors to caveolae microdomains, fluorescently labeled IgE receptors were found to be uniformly distributed in the plasma membrane of unstimulated cells and only transiently translocated to glycosphingolipid rich microdomains after antigen addition. Thus, these in vivo studies support a plasma membrane signaling mechanism by which IgE receptors transiently associate with microdomains and induce the spatially restricted activation of Syk and PLC-γ1.  相似文献   

14.
LIM domain-containing proteins contribute to cell fate determination, the regulation of cell proliferation and differentiation, and remodeling of the cell cytoskeleton. These proteins can be found in the cell nucleus, cytoplasm, or both. Whether and how cytoplasmic LIM proteins contribute to the cellular response to extracellular stimuli is an area of active investigation. We have identified and characterized a new LIM protein, Ajuba. Although predominantly a cytosolic protein, in contrast to other like proteins, it did not localize to sites of cellular adhesion to extracellular matrix or interact with the actin cytoskeleton. Removal of the pre-LIM domain of Ajuba, including a putative nuclear export signal, led to an accumulation of the LIM domains in the cell nucleus. The pre-LIM domain contains two putative proline-rich SH3 recognition motifs. Ajuba specifically associated with Grb2 in vitro and in vivo. The interaction between these proteins was mediated by either SH3 domain of Grb2 and the N-terminal proline-rich pre-LIM domain of Ajuba. In fibroblasts expressing Ajuba mitogen-activated protein kinase activity persisted despite serum starvation and upon serum stimulation generated levels fivefold higher than that seen in control cells. Finally, when Ajuba was expressed in fully developed Xenopus oocytes, it promoted meiotic maturation in a Grb2- and Ras-dependent manner.  相似文献   

15.
Several cytoplasmic tyrosine kinases contain a conserved, non-catalytic stretch of approximately 100 amino acids called the src homology 2 (SH2) domain, and a region of approximately 50 amino acids called the SH3 domain. SH2/SH3 domains are also found in several other proteins, including phospholipase C-gamma (PLC gamma). Recent studies indicate that SH2 domains promote association between autophosphorylated growth factor receptors such as the epidermal growth factor (EGF) receptor and signal transducing molecules such as PLC gamma. Because SH2 domains bind specifically to protein sequences containing phosphotyrosine, we examined their capacity to prevent tyrosine dephosphorylation of the EGF and other receptors with tyrosine kinase activity. For this purpose, various SH2/SH3 constructs of PLC gamma were expressed in Escherichia coli as glutathione-S-transferase fusion proteins. Our results show that purified SH2 domains of PLC gamma are able to prevent tyrosine dephosphorylation of the EGF receptor and other receptors with tyrosine activity. The inhibition of tyrosine dephosphorylation paralleled the capacity of various SH2-containing constructs to bind to the EGF receptor, suggesting that the tyrosine phosphatase and the SH2 domain compete for the same tyrosine phosphorylation sites in the carboxy-terminal tail of the EGF receptor. Analysis of the phosphorylation sites protected from dephosphorylation by PLC gamma-SH2 revealed substantial inhibition of dephosphorylation of Tyr992 at 1 microM SH2. This indicates that Tyr992 and its flanking sequence is the high-affinity binding site for SH2 domains of PLC gamma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
Weak protein-protein interactions (PPIs) (K(D) > 10(-6) M) are critical determinants of many biological processes. However, in contrast to a large growing number of well-characterized, strong PPIs, the weak PPIs, especially those with K(D) > 10(-4) M, are poorly explored. Genome wide, there exist few 3D structures of weak PPIs with K(D) > 10(-4) M, and none with K(D) > 10(-3) M. Here, we report the NMR structure of an extremely weak focal adhesion complex (K(D) approximately 3 x 10(-3) M) between Nck-2 SH3 domain and PINCH-1 LIM4 domain. The structure exhibits a remarkably small and polar interface with distinct binding modes for both SH3 and LIM domains. Such an interface suggests a transient Nck-2/PINCH-1 association process that may trigger rapid focal adhesion turnover during integrin signaling. Genetic rescue experiments demonstrate that this interface is indeed involved in mediating cell shape change and migration. Together, the data provide a molecular basis for an ultraweak PPI in regulating focal adhesion dynamics during integrin signaling.  相似文献   

18.
PINCH is a five LIM domain protein involved in the regulation of integrin-mediated cell adhesion. It has been shown that PINCH interacts with integrin-linked kinase and Nck2. Here we describe a new isoform of PINCH, which we call PINCH2. Therefore, we rename PINCH to PINCH1. PINCH2 has an overall similarity of 92% to PINCH1 and contains five LIM domains like PINCH1. While protein and gene structure of the PINCH homologues are very similar and well conserved during evolution, we observed differential expression pattern of the mRNAs. Based on northern hybridization of mouse embryo RNA, PINCH1 is already detectable at E8.5. It is highly expressed during later stages of development and in all adult mouse tissues analyzed, with the highest levels in heart, lung, bladder, skin, and uterus. In contrast, significant PINCH2 expression starts at E14.5. In adult mice it is widely expressed, similar to PINCH1, but absent from spleen and thymus. In situ hybridization confirmed the Northern data and showed differential expression of PINCH1 and PINCH2 in embryonic intestine. Finally, we demonstrate that PINCH2 localizes to focal adhesions in NIH 3T3 cells and to Z-disks in primary rat cardiomyocytes.  相似文献   

19.
Xenopus oocytes from unprimed frogs possess insulin-like growth factor I (IGF-I) receptors but lack insulin and IGF-I receptor substrate 1 (IRS-1), the endogenous substrate of this kinase, and fail to show downstream responses to hormonal stimulation. Microinjection of recombinant IRS-1 protein enhances insulin-stimulated phosphatidylinositol (PtdIns) 3-kinase activity and restores the germinal vesicle breakdown response. Activation of PtdIns 3-kinase results from formation of a complex between phosphorylated IRS-1 and the p85 subunit of PtdIns 3-kinase. Microinjection of a phosphonopeptide containing a pYMXM motif with high affinity for the src homology 2 (SH2) domain of PtdIns 3-kinase p85 inhibits IRS-1 association with and activation of the PtdIns 3-kinase. Formation of the IRS-1-PtdIns 3-kinase complex and insulin-stimulated PtdIns 3-kinase activation are also inhibited by microinjection of a glutathione S-transferase fusion protein containing the SH2 domain of p85. This effect occurs in a concentration-dependent fashion and results in a parallel loss of hormone-stimulated oocyte maturation. These inhibitory effects are specific and are not mimicked by glutathione S-transferase fusion proteins expressing the SH2 domains of ras-GAP or phospholipase C gamma. Moreover, injection of the SH2 domains of p85, ras-GAP, and phospholipase C gamma do not interfere with progesterone-induced oocyte maturation. These data demonstrate that phosphorylation of IRS-1 plays an essential role in IGF-I and insulin signaling in oocyte maturation and that this effect occurs through interactions of the phosphorylated YMXM/YXXM motifs of IRS-1 with SH2 domains of PtdIns 3-kinase or some related molecules.  相似文献   

20.
PINCH is a five LIM domain protein involved in the regulation of integrin-mediated cell adhesion. It has been shown that PINCH interacts with integrin-linked kinase and Nck2. Here we describe a new isoform of PINCH, which we call PINCH2. Therefore, we rename PINCH to PINCH1. PINCH2 has an overall similarity of 92% to PINCH1 and contains five LIM domains like PINCH1. While protein and gene structure of the PINCH homologues are very similar and well conserved during evolution, we observed differential expression pattern of the mRNAs. Based on northern hybridization of mouse embryo RNA, PINCH1 is already detectable at E8.5. It is highly expressed during later stages of development and in all adult mouse tissues analyzed, with the highest levels in heart, lung, bladder, skin, and uterus. In contrast, significant PINCH2 expression starts at E14.5. In adult mice it is widely expressed, similar to PINCH1, but absent from spleen and thymus. In situ hybridization confirmed the Northern data and showed differential expression of PINCH1 and PINCH2 in embryonic intestine. Finally, we demonstrate that PINCH2 localizes to focal adhesions in NIH 3T3 cells and to Z-disks in primary rat cardiomyocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号