首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The incorporation of [3H]glycine into acid-insoluble protein and of [3H]acetate into glycosaminoglycans by cultured chick chondrocytes was stimulated by the addition of L-glutamine to the incubation medium. The effect of exogenous L-glutamine on protein synthesis was studied further by examining changes in the sedimentation patterns on sucrose gradients of ribosomes isolated from chondrocytes incubated in presence and absence of L-glutamine. It was found that the absence of L-glutamine caused a disaggregation of polyribosomes that was revered by the addition of this amino acid to the culture medium. No detectable glutamine synthetase activity could be measured in avian articular cartilage. These results indicate that L-glutamine is an essential amino acid for cartilage in that an extracellular supply of this amino acid is required for the maintenance of protein and glycosaminoglycan synthesis. A dependence of L-glutamine was also demonstrated for other avain connective tissues.  相似文献   

2.
THe incorporation of [3H]glycine into acid-insoluble protein and of [3H]acetate into glysoaminoglycans by cultured chick chondrocytes was stimulated by the addition of L-glutamine to the incubation medium. The effect of exogenous L-glutamine on protein synthesis was studied further by examining changes in the sedimentation patterns on sucrose gardients of ribosomes isolated from chondrocytes incubated in presence and absence of L-glutamine. It was found that the absence of L-glutamine caused a disaggregation of poly-ribosomes that was reversed by the addition of this amino acid to the culture medium. No detectable glutamine synthetase activity could be measured in avian articular cartilage. These results indicate that L-glutamine is an essential amino acid for cartilage in that an extracellular supply of this amino acid is required for the maintenance of protein and glycosaminoglycan synthesis. A dependence on L-glutamine was also demonstrated for other avain connective tissues.  相似文献   

3.
Using a genomic library constructed from Saccharomyces cerevisiae, we have identified a gene GFA1 that confers resistance to methylmercury toxicity. GFA1 encodes L-glutamine:D-fructose-6-phosphate amidotransferase (GFAT) and catalyzes synthesis of glucosamine-6-phosphate. Transformed yeast cells expressing GFA1 demonstrated resistance to methylmercury but no resistance to p-chloromercuribenzoate, a GFAT inhibitor. The cytotoxicity of methylmercury was inhibited by loading excess glucosamine 6-phosphate into yeast. Considering that GFAT is an essential cellular enzyme, our findings suggest that GFAT is the major target molecule of methylmercury in yeasts. This report is the first to identify the target molecule of methylmercury toxicity in eukaryotic cells.  相似文献   

4.
Secondary monolayer and spinner cultures of rabbit articular chondrocytes released into the culture medium prostaglandins the synthesis of which was inhibited by sodium meclofenamate. The prostaglandins measured by radioimmunoassay were, in order of decreasing abundance, prostaglandin E2, 6-oxoprostaglandin F, (the stable metabolite of prostacyclin) and prostaglandin F. Several lines of evidence indicated that chondrocytes synthesize little if any thromboxane B2 (the stable metabolite of thromboxane A2). The presence of prostaglandins was confirmed by radiometric thin-layer chromatography of extracts of culture media incubated with [3H]arachidonic acid-labeled cells. In monolayer culture, chondrocytes synthesized immunoreactive prostaglandins in serum-free as well as serum-containing medium. Monolayer chondrocytes produced higher levels of prostaglandin E2 relative to 6-oxo-prostaglandin F than did spinner cells, but the latter synthesized more total prostaglandins. The identity of endogenous prostaglandins as well as those synthesized in short-term culture by rabbit cartilage slices was compared to those produced by chondrocytes in long-term culture. Chondrocytes synthesized all of the prosta-glandins found in articular cartilage. Minimal quantities of thromboxane B2 were detected in cartilage. A higher percentage of 6-oxo-prostaglandin F relative to other prostaglandins was found in cartilage than in either monolayer or spinner chondrocyte cultures. These results demonstrate that articular chondrocytes synthesize prostaglandins and prostacyclin. These prostaglandins may exert significant physiological effects on cartilage, since exogenous prosta-glandins depress chondrocyte sulfated-proteoglycan synthesis and may even promote proteoglycan degradation.  相似文献   

5.
Incubation of embryonic chick chondrocytes with 6-diazo-5-oxo-L-norleucine (DON), a glutamine analogue, led to a dose-dependent inhibition of [35S]sulfate incorporation into proteoglycan. In the absence of exogenous L-glutamine, a maximal inhibition of 50-60% was achieved with DON concentrations greater than or equal to 1 microgram/ml (6 microM); the ED50 was approximately 0.2 microM. This inhibitory effect could be partially restored by the addition of 100-fold molar excess of either exogenous L-glutamine or M-glucosamine. The quantitative changes were due neither to inhibition of protein core synthesis nor to undersulfation of glycosaminoglycan chains. Rather, the proteoglycan synthesized in the presence of DON contained substantially fewer (approximately 50% of control) and smaller (10-15% of control, on the average) chondroitin sulfate chains as well as a paucity of keratan sulfate chains. The result of these structural changes was a proteoglycan with significantly lower molecular weight, buoyant density, and anionic charge. In spite of these modifications, the altered proteoglycan synthesized in the presence of DON was secreted normally and retained the ability to interact with exogenous hyaluronic acid and link proteins. The results of our experiments also indicate that DON substantially diminished the pool of hexosamine precursors required for glycosaminoglycan synthesis. We conclude that this decrease was responsible for the molecular alterations described above; and these, in turn, can account for the morphological changes previously seen in cartilage matrix synthesized in the presence of DON.  相似文献   

6.
F C Wedler  J Carfi  A E Ashour 《Biochemistry》1976,15(8):1749-1755
The action of various feedback modifiers on Bacillus stearothermophilus glutamine synthetase has been investigated by initial velocity kinetics, using the Mn2+-stimulated biosynthetic assay at 55 degrees C. The most potent inhibitors, used singly, are AMP, L-glutamine, and L-alanine. Other modifiers of significance include glycine, CTP, L-histidine, glucosamine 6-phosphate, and GDP. Marked synergism of action is observed for AMP in the presence of L-glutamine, L-histidine, ADP, or glucosamine 6-phosphate (glucosamine-6-P), and for CTP with ADP or GDP. Inhibition by saturating levels of many modifiers is either less than 100%, or is not overcome by elevated substrate levels, or both. This argues for modifier binding sites separate from substrate sites, notably in the cases of AMP, L-glutamine, glycine, L-alanine, glucosamine-6-P, and CTP. Glycine and L-alanine are Vmax inhibitors, whereas L-glutamine, glucosamine-6-P, GDP, and CTP alter the binding of L-glutamate. ADP and L-histidine apparently can compete directly with MnATP, but AMP alters Mn-ATP binding from a separate site. The action of several modifiers requires or is enhanced by bound substrates. Considerable antagonistic interaction is observed in experiments with modifier pairs, but the most potent inhibitors show synergistic or cumulative (independent) interactions. One may interpret antagonistic effects as due to (a) overlapping modifier domains, or (b) separate but antagonistically interacting sites. Either interpretation leads to a scheme for modifier-substrate and modifier-modifier site interactions in which the thermophilic enzyme must maintain and stabilize a great deal of complex functional information under extreme environmental conditions.  相似文献   

7.
Human L-glutamine: D-fructose-6-phosphate amidotransferase (Gfat1), a recognized target in type 2 diabetes complications, was expressed in Sf9 insect cells with an internal His(6)-tag and purified to homogenity. Two different microplate assays that quantify, respectively D-glucosamine-6-phosphate and L-glutamate were used to analyze the enzyme kinetic properties. The recombinant human L-glutamine: D-fructose-6-phosphate amidotransferase isoform 1 exhibits Michaelis parameters K(m)(Fru-6P)=0.98 mM and K(m)(Gln)=0.84 mM which are similar to the values reported for the same enzyme from different sources. The stimulation of hydrolysis of the alternate substrate L-glutamine para-nitroanilide by D-fructose-6P (Fru-6P) afforded a K(d) of 5 microM for Fru-6P.  相似文献   

8.
Overcoming the limited ability of articular cartilage to self-repair may be possible through tissue engineering. However, bioengineered cartilage formed using current methods does not match the physical properties of native cartilage. In previous studies we demonstrated that mechanical stimulation improved cartilage tissue formation. This study examines the mechanisms by which this occurs. Application of uniaxial, cyclic compression (1 kPa, 1 Hz, 30 min) significantly increased matrix metalloprotease (MMP)-3 and MMP-13 gene expression at 2 h compared to unstimulated cells. These returned to constitutive levels by 6 h. Increased MMP-13 protein levels, both pro- and active forms, were detected at 6 h and these decreased by 24 h. This was associated with tissue degradation as more proteoglycans and collagen had been released into the culture media at 6 h when compared to the unstimulated cells. This catabolic change was followed by a significant increase in type II collagen and aggrecan gene expression at 12 h post-stimulation and increased synthesis and accumulation of these matrix molecules at 24 h. Mechanical stimulation activated the MAP kinase pathway as there was increased phosphorylation of ERK1/2 and JNK as well as increased AP-1 binding. Mechanical stimulation in the presence of the JNK inhibitor, SP600125, blocked AP-1 binding preventing the increased gene expression of MMP-3 and -13 at 2 h and type II collagen and aggrecan at 12 h as well as the increased matrix synthesis and accumulation. Given the sequence of changes, cyclic compressive loading appears to initiate a remodelling effect involving MAPK and AP-1 signalling resulting in improved in vitro formation of cartilage.  相似文献   

9.
The integrity of the collagen network is essential for articular cartilage to fulfill its function in load support and distribution. Damage to the collagen network is one of the first characteristics of osteoarthritis. Since extensive collagen damage is considered irreversible, it is crucial that chondrocytes maintain a functional collagen network. We investigated the effects of advanced glycation end products (AGEs) on the turnover of collagen by articular cartilage chondrocytes. Increased AGE levels (by culturing in the presence of ribose) resulted in decreased collagen synthesis (P < 0.05) and decreased MMP-mediated collagen degradation (P < 0.02). The latter could be attributed to increased resistance of the collagen network to MMPs (P < 0.05) as well as the decreased production of MMPs by chondrocytes (P < 0.02). Turnover of a protein is determined by its synthesis and degradation rates and therefore these data indicate that collagen turnover is decreased at enhanced AGE levels. Since AGE levels in human cartilage increase approximately 50 fold between age 20 and 80, cartilage collagen turnover likely decreases with increasing age. Impaired collagen turnover adversely affects the capacity of chondrocytes to remodel and/or repair its extracellular matrix. Consequently, age-related accumulation of AGE (via decreased collagen turnover) may contribute to the development of cartilage damage in osteoarthritis.  相似文献   

10.
To identify novel genes that confer resistance to methylmercury (MeHg), a yeast genomic DNA library was transfected into Saccharomyces cerevisiae. Two functional plasmids were isolated from transfected yeast clones D1 and H5 that exhibited resistance to MeHg. The yeast transfected with plasmid isolated from clone H5 was several-fold more resistant than yeast transfected with plasmid from clone D1. Functional characterization of the genomic DNA fragment obtained from clone H5 determined that the GFA1 gene conferred resistance to MeHg. GFA1 was reported to encode L-glutamine:D-fructose-6-phosphate amidotransferase (GFAT) which catalyzes the synthesis of glucosamine-6-phosphate from glutamine and fructose-6-phosphate. Accumulation of mercury in yeast clone W303B/pGFA1, which contains the transfected GFA1 gene, did not differ from that in control yeast clone W303B/pYES2. The W303B/pGFA1 strain did not show resistance to mercuric chloride, zinc chloride, cadmium chloride or copper chloride, suggesting that the resistance acquired by GFA1 gene transfection might be specific to MeHg. This is the first report of a gene involved in MeHg resistance in eukaryotic cells identified by screening a DNA library.  相似文献   

11.
In cartilage tissue engineering, the determination of the most appropriate cell/tissue culture conditions to maximize extracellular matrix synthesis is of major importance. The extracellular pH plays an important role in affecting energy metabolism and matrix synthesis by chondrocytes. In this study, chondrocytes were isolated from bovine articular cartilage, embedded in agarose gel, and cultured at varied pH levels (7.3-6.6). Rate of lactate production, total glycosaminoglycan (GAG) and collagen synthesis, as well as total cell numbers and cell viability were evaluated after culturing for up to 7 days. The results showed the rate of lactic acid production over the 7-day culture was significantly affected by extracellular pH; acidic pH markedly inhibited the production of lactate. Also, a biphasic response to extracellular pH in regard to total GAG synthesis was observed; the maximum synthesis was seen at pH 7.2. However, the collagen synthesis was not pH-dependent within the pH range explored. In addition, within the conditions studied, total cell numbers and cell viability were not significantly affected by extracellular pH. In conclusion, even minor changes in extracellular pH could markedly affect the metabolic activities and biosynthetic ability of chondrocytes. Consequently, the control of extracellular pH condition is crucially important for successful cartilage tissue engineering and for the study of chondrocyte physiology and functions.  相似文献   

12.
Lovett , James S., and Edward C. Cantino . (Michigan State U., East Lansing.) The relation between biochemical and morphological differentiation in Blastocladiella emersonii. I. Enzymatic synthesis of glucosamine-6-phosphate. Amer. Jour. Bot. 47(6): 499–505. Illus. 1960.—The enzyme glucosamine synthetase (glutamine-fructose-6-phosphate transamidase) was purified ca. 19-fold from extracts of the aquatic phycomycete, Blastocladiella emersonii, by centrifugation, protamine sulfate fractionation, and adsorption on Ca3(PO4)2 gel The pH optimum, time course, and relation between enzyme concentration and reaction rate were established for the partially purified synthetase. The reaction was the same as that of the enzyme of Neurospora crassa: D-fructose-6- phosphate + L-glutamine —> D-glucosamine-6-phosphate + L-glutamic acid. The 20-fold purification attained resulted in an enzyme preparation with a specific activity 40 times greater than that reported for other organisms to date.  相似文献   

13.
Extracts of the aquatic fungus Blastocladiella emersonii were found to contain protein phosphatases type 1, type 2A, and type 2C with properties analogous to those found in mammalian tissues. The activities of all three protein phosphatases are developmentally regulated, increasing during sporulation, with maximum level in zoospores. Protein phosphatases 2A and 2C, present in zoospore extracts, catalyze the dephosphorylation of L-glutamine:fructose-6-phosphate amidotransferase (EC 2.6.1.16, amidotransferase), a key regulatory enzyme in hexosamine biosynthesis. The protein phosphatase inhibitor okadaic acid induces encystment and inhibits germ tube formation but does not affect the synthesis of the chitinous cell wall. These results strongly suggest that phosphatase 2C is responsible for the dephosphorylation of amidotransferase in vivo. This dephosphorylation is inhibited by uridine-5'-diphospho-N-acetylglucosamine, the end product of hexosamine synthesis and the substrate for chitin synthesis. This result demonstrates a dual role of uridine-5'-diphospho-N-acetylglucosamine by inhibiting the activity of the phosphorylated form of amidotransferase and by preventing its dephosphorylation by protein phosphatases.  相似文献   

14.
Akanji OO  Lee DA  Bader DA 《Biorheology》2008,45(3-4):229-243
Endogenous electrical activity has been detected in articular cartilage. It has previously been suggested that the associated electrical currents and potentials are important to the mechanotransduction processes in cartilage. The present study investigates the effects of direct current on cell proliferation and matrix synthesis, using the well established 3D chondrocyte--agarose model system. Bovine chondrocytes isolated from metacarpalphalangeal joints were seeded in agarose constructs and exposed to a current density of 4 mA/cm2 for 6 h, a magnitude and period which was shown to maintain cell viability. The influence of the optimized electric stimulus was assessed by protein incorporation and mRNA measurements, using radiolabels and real-time QPCR, respectively. Results indicated no systematic influences of electrical current on protein synthesis, cell proliferation and mRNA expression levels. These data suggest that both the mode of stimulation and the model system are critical for the in vitro modulation of chondrocyte metabolism.  相似文献   

15.
Swarm rat chondrosarcoma chondrocytes produce an inhibitor of collagenase similar to that found in bovine articular chondrocytes and extracts of bovine scapular cartilage. These cells synthesize normal levels of cartilage type proteoglycans when cultured in serum free medium with insulin. Collagen synthesis is also increased when insulin is added to chondrosarcoma chondrocytes. We have demonstrated that insulin stimulates collagenase inhibitor production by these chondrocytes. Enhancement of inhibitory activity occurs over the range of 10 to 1000 ng/ml. A 3.2 fold stimulation was observed at a concentration of 1 microgram/ml. There was a lag period of 24 to 48 hours before the insulin effect became evident. Latent or active collagenase was not detectable under these conditions. These results suggest that the hormone insulin controls the levels of collagen in this tumor by stimulating synthesis of collagen and inhibitors of collagenase.  相似文献   

16.
Regulation of osteogenic proteins by chondrocytes   总被引:9,自引:0,他引:9  
The purpose of this review is to summarize the current scientific knowledge of bone morphogenetic proteins (BMPs) in adult articular cartilage. We specifically focus on adult cartilage, since one of the major potential applications of the members of the BMP family may be a repair of adult tissue after trauma and/or disease. After reviewing cartilage physiology and BMPs, we analyze the data on the role of recombinant BMPs as anabolic agents in tissue formation and restoration in different in vitro and in vivo models following with the endogenous expression of BMPs and factors that regulate their expression. We also discuss recent transgenic modifications of BMP genes and subsequent effect on cartilage matrix synthesis. We found that the most studied BMPs in adult articular cartilage are BMP-7 and BMP-2 as well as transforming growth factor-beta (TGF-beta). There are a number of contradicting reports for some of these growth factors, since different models, animals, doses, time points, culture conditions and devices were used. However, regardless of the experimental conditions, only BMP-7 or osteogenic protein-1 (OP-1) exhibits the most convincing effects. It is the only BMP studied thus far in adult cartilage that demonstrates strong anabolic activity in vitro and in vivo with and without serum. OP-1 stimulates the synthesis of the majority of cartilage extracellular matrix proteins in adult articular chondrocytes derived from different species and of different age. OP-1 counteracts the degenerative effect of numerous catabolic mediators; it is also expressed in adult human, bovine, rabbit and goat articular cartilage. This review reveals the importance of the exploration of the BMPs in the cartilage field and highlights their significance for clinical applications in the treatment of cartilage-related diseases.  相似文献   

17.
Insulin-like growth factor 1 (IGF-1) has poor anabolic efficacy in cartilage in osteoarthritis (OA), partly because of its sequestration by abnormally high levels of extracellular IGF-binding proteins (IGFBPs). We studied the effect of NBI-31772, a small molecule that inhibits the binding of IGF-1 to IGFBPs, on the restoration of proteoglycan synthesis by human OA chondrocytes. IGFBPs secreted by human OA cartilage or cultured chondrocytes were analyzed by western ligand blot. The ability of NBI-31772 to displace IGF-1 from IGFBPs was measured by radiobinding assay. Anabolic responses in primary cultured chondrocytes were assessed by measuring the synthesis of proteoglycans in cetylpyridinium-chloride-precipitable fractions of cell-associated and secreted 35S-labeled macromolecules. The penetration of NBI-31772 into cartilage was measured by its ability to displace 125I-labeled IGF-1 from cartilage IGFBPs. We found that IGFBP-3 was the major IGFBP secreted by OA cartilage explants and cultured chondrocytes. NBI-31772 inhibited the binding of 125I-labeled IGF-1 to IGFBP-3 at nanomolar concentrations. It antagonized the inhibitory effect of IGFBP-3 on IGF-1-dependent proteoglycan synthesis by rabbit chondrocytes. The addition of NBI-31772 to human OA chondrocytes resulted in the restoration or potentiation of IGF-1-dependent proteoglycan synthesis, depending on the IGF-1 concentrations. However, NBI-31772 did not penetrate into cartilage explants. This study shows that a new pharmacological approach that uses a small molecule inhibiting IGF-1/IGFBP interaction could restore or potentiate proteoglycan synthesis in OA chondrocytes, thereby opening exciting possibilities for the treatment of OA and, potentially, of other joint-related diseases.  相似文献   

18.
Hydrocortisone stimulated glycosaminoglycan (GAG) synthesis, a characteristic of the cartilage phenotype, of rabbit costal chondrocytes in confluent quiescent culture, as judged by the incorporations of [35S]sulfate and [3H]glucosamine. Hydrocortisone also stimulated incorporation of [3H]serine into proteoglycan. The stimulation of GAG synthesis by hydrocortisone was dose-dependent and maximal at a physiological concentration of 10(-7) M. Hydrocortisone also stimulated GAG synthesis in cultures in the log-phase of growth. In this case, its maximal effect was observed at a concentration of 10(-6) M. The magnitude of the increase of GAG synthesis in response to hydrocortisone was larger in confluent culture than in log-phase cultures. Hydrocortisone stimulated DNA synthesis dose-dependently, and its effect was observable at a physiological concentration. However, no stimulation of DNA synthesis by hydrocortisone was observed in serum-free medium, in contrast to that of GAG synthesis. Hydrocortisone also increased protein synthesis and the cell number. Dexamethasone also stimulated the syntheses of both GAG and DNA. These results show that glucocorticoids stimulated both the differentiated phenotype of chondrocytes and the proliferation of rabbit costal chondrocytes in culture. Moreover, the effect of glucocorticoids was primarily on the differentiated phenotype of chondrocytes and its effect on proliferation was permissive.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号