首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The P1 restriction endonuclease (EcoP1) prepared from a P1 lysogen of Escherichia coli makes one double-strand break in simian virus (SV40) DNA. In the presence of cofactors S-adenosylmethionine and ATP the enzyme cleaves 70% of the closed circular SV40 DNA molecules once to produce unit-length linear molecules and renders the remaining 30% resistant to further cleavage. No molecules were found by electron microscopy or by gel electrophoresis that were cleaved more than once. It would appear that the double-strand break is made by two nearly simultaneous single-strand breaks, since no circular DNA molecules containing one single-strand break were found as intermediates during the cleavage reaction. The EcoP1 endonuclease-cleaved linear SV40 DNA molecules are not cleaved at a unique site, as shown by the generation of about 65% circular molecules after denaturation and renaturation. These EcoP1 endonuclease-cleaved, renatured circular molecules are resistant to further cleavage by EcoP1 endonuclease.The EcoP1 endonuclease cleavage sites on SV40 DNA were mapped relative to the partial denaturation map and to the EcoRI and HpaII restriction endonuclease cleavage sites. These maps suggest there are a minimum of four unique but widely spaced cleavage sites at 0.09, 0.19, 0.52, and 0.66 SV40 units relative to the EcoRI site. The frequency of cleavage at any particular site differs from that at another site. If S-adenosylmethionine is omitted from the enzyme reaction mix, SV40 DNA is cleaved into several fragments.An average of 4.6 ± 1 methyl groups are transferred to SV40 DNA from S-adenosylmethionine during the course of a normal reaction containing the cofactors. Under conditions which optimize this methylation, 7 ± 1 methyl groups can be transferred to DNA. This methylation protects most of the molecules from further cleavage. The methyl groups were mapped relative to the Hemophilus influenzae restriction endonuclease fragments. The A fragment receives three to four methyl groups and the B and G fragments each receive one to two methyl groups. These fragments correspond to those in which cleavage sites are located.  相似文献   

2.
The non-defective (heavy) virions from a simian virus 40-like virus (DAR virus) isolated from human brain have been serially passaged at high input multi-plicities in primary monkey kidney cells. The 32P-labeled, progeny DAR-viral genomes have been purified and tested for sensitivity to the RI restriction endouclease from Escherichia coli (Eco RI3 restriction nuclease). The parental DAR-viral genomes share many physical properties with “standard” simian virus 40 DNA and are cleaved once by the Eco RI restriction nuclease. After the fourth serial passage, three populations of genomes could be distinguished: Eco RI resistant, Eco RI sensitive (one cleavage site) and Eco RI “supersensitive” (three, symmetrically-located, cleavage sites). The Eco RI cleavage product of the “supersensitive” form is one-third the physical size (10.4 S) of simian virus 40 DNA and reassociates about three times more rapidly than sheared, denatured simian virus 40 DNA. From the fourth to the eighth serial passages, the genomes containing this specific triplication of viral DNA sequences were selected for and became the predominant viral DNA species.  相似文献   

3.
A 203 base-pair fragment containing the lac operator/promoter region of Escherichia coli was inserted into the EcoRI site of the plasmid vector pKC7. Rates of restriction endonuclease cleavage of the flanking EcoRI sites and of several other restriction sites on the DNA molecule were then compared in the presence and absence of bound RNA polymerase or lac repressor. The rates were identical whether or not protein had been bound, even for sites as close as 40 base-pairs from a protein binding site. No difference was detected using supercoiled, nicked circular, or linear DNA substrates. No apparent change in the rates of methylation of EcoRI sites by EcoRI methylase was produced by binding the regulatory proteins.  相似文献   

4.
Serial passage of the non-defective form of a simian virus 40-like virus (DAR) isolated from human brain results in the appearance of three distinct classes of supercoiled DNAs: RI resistant, RI sensitive (one cleavage site) and RI “supersensitive” (three cleavage sites). The RI cleavage product of the “super sensitive” form is one-third the physical size of simian virus 40 DNA (10.4 S) and reassociates about three times more rapidly than “standard” viral DNA. To identify the portions of the DAR genome present in the 10.4 S segment, the plus strand of each of the 11 fragments of 32P-labeled simian virus 40 DNA, produced by cleavage with the Hemophilus influenzae restriction endonuclease, was hybridized in solution with the sheared RI cleavage product of the “supersensitive” class of viral DNA. Reaction was observed with fragments located in two distinct regions of the simian virus 40 genome: (1) Hin-A and C; (2) Hin-G, J, F and K.Further studies indicated that simian virus 40 complementary RNA transcribed in vitro with Escherichia coli RNA polymerase from one strand of simian virus 40 DNA reacts with both strands of the denatured 10.4 S cleavage product when hybridization is monitored with hydroxyapatite. Treatment of the 10.4 S DNA-simian virus 40 cRNA hybrid with the single-strand spcific nuclease, S1, converted approximately 50% of the radioactive counts to an acid-soluble product. These results indicate that the 10.4 S product contains a transposition of sequences originally present on one of the DAR DNA strands to the other strand. Examination of heteroduplexes formed between the 10.4 S segment and unique linear forms of DAR DNA produced with the R · Eco RI restriction endonuclease have confirmed these observations. Thus it appears that a molecular rearrangement(s) has resulted in the recombination and inversion of viral DNA sequences from two separate loci on the parental DAR genome. This 1.1 × 106 dalton segment is reiterated three times in a supercoiled molecule equivalent in physical size to parental DAR DNA.  相似文献   

5.
EcoP1 is a restriction modification enzyme encoded by bacteriophage P1. It requires ATP for cleavage and S-adenosyl methionine for methylation of DNA. We have mapped the sites of both cleavage and methylation in simian virus 40 DNA and determined their sequences. The enzyme methylates the sequence A-G-mA-C-C and cuts the DNA 25 to 27 base-pairs from the site of methylation in the 3′ direction, with a two to four base-pair stagger between cuts. Consistent with the fact that the methylation sequence is asymmetric, the enzyme methylates only one strand in vitro. One variant of simian virus 40 has acquired an additional EcoP1 methylation and cleavage site by changing a A-G-A-A-C sequence to A-G-A-C-C.  相似文献   

6.
The polyoma virus (Py) transformed cell line 7axB, selected by in vivo passage of an in vitro transformed cell, contains an integrated tandem array of 2.4 genomes and produces the large, middle, and small Py T-antigen species, with molecular weights of 100,000, 55,000, and 22,000, respectively (Hayday et al., J. Virol. 44:67-77, 1982; Lania et al., Cold Spring Harbor Symp. Quant. Biol. 44:597-603, 1980). The integrated viral and adjacent host DNA sequences have been molecularly cloned as three EcoRI fragments (Hayday et al.). One of these fragments (7B-M), derived from within the tandem viral sequences, is equivalent to an EcoRI viral linear molecule. Fragment 7B-M has been found to be transformation competent but incapable of producing infectious virus after DNA transfection (Hayday et al.). By constructing chimerae between 7B-M and Py DNA and by direct DNA sequencing, the mutation responsible for the loss of infectivity has been located to a single base change (adenine to guanine) at nucleotide 2503. This results in a conversion of an aspartic acid to a glycine in the C-terminal region of the Py large T-antigen but does not appear to affect the binding of the Py large T-antigen to Py DNA at the putative DNA replication and autoregulation binding sites. The mutation is located within a 21-amino acid homology region shared by the simian virus 40 large T-antigen (Friedmann et al., Cell 17:715-724, 1979). These results suggest that the mutation in the 7axB large T-antigen may be involved in the active site of the protein for DNA replication.  相似文献   

7.
The five EcoRI2 restriction sites in bacteriophage lambda DNA have been mapped at 0.445, 0.543, 0.656, 0.810, and 0.931 fractional lengths from the left end of the DNA molecule. These positions were determined electron-microscopically by single-site cleavage of hydrogen-bonded circular λ DNA molecules and by cleavage of various DNA heteroduplexes between λ DNA and DNA from well defined λ mutants. The DNA lengths of the EcoRI fragments are in agreement with their electrophoretic mobility on agarose gels but are not in agreement with their mobilities on polyacrylamide gels. These positions are different from those previously published by Allet et al. (1973). Partial cleavage of pure λ DNA by addition of small amounts of EcoRI endonuclease does not lead to random cleavage between molecules. Also, the first site cleaved is not randomly distributed among the five sites within a molecule. The site nearest the right end is cleaved first about ten times more frequently than either of the two center sites.  相似文献   

8.
Nucleoprotein complexes containing viral DNA and cellular histones were extracted from nuclei of permissive cells infected with polyoma virus or simian virus 40 (SV40) and examined by electron microscopy. Polyoma and SV40 nucleoprotein complexes are almost identical. They appear as relaxed circular molecules consisting of 20 to 21 globular particles interconnected by thin filaments. Their contour length in 0.02 M salt is 2.7 times shorter than that of viral DNA form I obtained after dissociation of the proteins in 1 M NaCl. The nucleosomes have an average diameter of 12.5 nm. Each nucleosome contains 175 to 205 DNA base pairs condensed fivefold in length. The nucleosomes are regularly spaced on the circular molecule. The internucleosomal filaments are made of naked DNA, and each filament contains about 55 base pairs. The partial sensitivity of the nucleoprotein complex to cleavage by EcoR1 endonuclease suggests that the nucleosomes are not formed at specific sites on the viral genome. Faster sedimenting nucleoprotein complexes containing replicative intermediates were studied. Isopycnic centrifugation in metrizamide gradients in the absence of aldehyde fixation showed that these molecules conserved the same DNA-to-protein ratio as the form I DNA-containing complexes.  相似文献   

9.
Full-length proviral DNA of Fujinami sarcoma virus (FSV) of chickens was molecularly cloned and characterized. An analysis of FSV DNA integrated in mammalian cells showed that restriction endonuclease SacI has a single cleavage site on FSV DNA. Unintegrated closed circular FSV DNA obtained from newly infected cells was linearized by digestion with SacI and cloned into λgtWES·λB. The following three different molecules were isolated: FSV-1 (4.4 kilobases [kb]) and FSV-2 (4.7 kb), which appeared to be full-length FSV DNA molecules containing either one or two copies of the long terminal repeat structure, and FSV-3 (6 kb), which consisted of part FSV DNA and part DNA of unknown origin. An analysis of the structure of cloned FSV-1 and FSV-2 DNA molecules by restriction endonuclease mapping and hybridization with appropriate probes showed that about 2.6 kb of the FSV-unique sequence called FSV-fps is located in the middle of the FSV genome and is flanked by helper virus-derived sequences of about 1.3 kb at the 5′ end and 0.5 kb at the 3′ end. The long terminal repeats of FSV were found to have no cleavage site for either EcoRI or PvuI. Upon transfection, both FSV-1 DNA and FSV-2 DNA were able to transform mammalian fibroblasts. Four 32P-labeled DNA fragments derived from different portions of the FSV-fps sequence were used for hybridization to viral RNAs. We found that sequences within the 3′ half of the FSV-fps gene are homologous to RNAs of PRCII avian sarcoma virus and the Snyder-Theilen strain of feline sarcoma virus, both of which were previously shown to contain transforming genes related to FSV-fps. These results suggest that the 3′ portion of the FSV-fps sequence may be crucial for the transforming activity of fps-related oncogenic sequences.  相似文献   

10.
The nucleotide sequences of the minus and plus strands of simian virus 40 DNA in a 17-base-pair segment spanning the EcoRI restriction site have been identified. The minus-strand sequence is (5′) T-G-G-C-G-A-G-A-A-T-T-C-C-T-T-T-G and the plus-strand sequence is its complement: (5′) C-A-A-A-G-G-A-A-T-T-C-T-C-G-C-C-A.  相似文献   

11.
Fragments of rDNA3 from Drosophila melanogaster produced by the restriction endonuclease EcoRI were cloned in the form of recombinant plasmids in Escheriehia coli. Maps were prepared showing the location of the coding regions and of several restriction endonuclease sites. Most rDNA repeats have a single EcoRI site in the 18 S gene region. Thus, 19 of 24 recombinant clones contained a full repeat of rDNA. Ten repeats with continuous 28 S genes and repeats containing insertions in the 28 S gene of 0.5, 1 and 5 kb were isolated. The 0.5 and 1 kb insertion sequences are homologous to segments of the 5 kb insertions; because of this homology they are grouped together and identified as type 1 insertions. Four recombinant clones contain an rDNA fragment that corresponds to only a portion of a repeating unit. In these fragments the 28 S gene is interrupted by a sequence which had been cleaved by EcoRI. The interrupting sequences in these clones are not homologous to any portion of type 1 insertions and are therefore classified as type 2. In one of the above clones the 28 S gene is interrupted at an unusual position; such a structure is rare or absent in genomic rDNA from the fly. Another unusual rDNA fragment was isolated as a recombinant molecule. In this fragment the entire 18 S gene and portions of the spacer regions surrounding it are missing from one repeat. A molecule with the same structure has been found in uncloned genomic rDNA by electron microscopic examination of RNA/DNA hybrids.  相似文献   

12.
Characterization of K virus and its comparison with polyoma virus.   总被引:3,自引:2,他引:1       下载免费PDF全文
The antigenic relationship between the two murine papovaviruses, K virus and polyoma virus, was examined by serological techniques to determine whether they shared any antigenic components. No cross-reactivity was found associated with the viral (V) antigens by the indirect immunofluorescence, neutralization, or hemagglutination-inhibition tests. The tumor (T) antigens expressed in transformed cells or cells productively infected by either K or polyoma virus did not cross-react by indirect immunofluorescence. An antigenic relationship was detected, however, among the late proteins of K virus, polyoma virus, simian virus 40, and the human papovavirus BKV, when tested with either hyperimmune sera prepared against polyoma virus and simian virus 40 or sera prepared against disrupted virions. The nucleic acids of K and polyoma viruses were compared by agarose gel electrophoresis and restriction endonuclease analysis. No nucleotide sequence homology between the genomes of these two viruses was detectable by DNA-DNA hybridization techniques under stringent conditions. The genome of K virus was found to be slightly smaller than that of polyoma virus, and the cleavage patterns of the viral DNAs with six restriction endonucleases were different. These findings indicate that there is little relationship between these two murine papovaviruses.  相似文献   

13.
Characterization of small plasmids from Staphylococcus aureus.   总被引:8,自引:0,他引:8  
Small molecular weight plasmids from Staphylococcus aureus were characterized with respect to size, restriction enzyme cleavage pattern and transforming capacity. The plasmids pS194 and pC194 which encode streptomycin and chloramphenicol resistance respectively contained 3.0 and 2.0 megadaltons of DNA as determined by zonal rate centrifugation and electron-microscopy. Both plasmids transformed S. aureus with high efficiency. Plasmid pC194 contained only one cleavage site for endonuclease HindIII and pS194 contained single cleavage sites for HindIII and EcoRI. A natural recombinant between these two plasmids, pSC194, shared the high transforming capacity of the parental plasmids and contained one EcoRI site And two HindIII sites. pSC194 DNA also transformed B. subtilis with high efficiency. The recombinant plasmid pSC194 may be used as an EcoRI vector for construction and propagation of hybrid DNA in S. aureus as shown in the following paper (Löfdahl et al., 1978).  相似文献   

14.
Isolation and sequence organization of human ribosomal DNA.   总被引:6,自引:0,他引:6  
The genes coding for 28 S and 18 S ribosomal RNA have been purified from leukemic leukocytes of one human individual by density gradient centrifugation. The purified ribosomal DNA was analyzed by restriction endonuclease digestion and electron microscopy. The location of cleavage sites for the restriction endonuclease EcoRI was established by R-loop mapping of restriction fragments by electron microscopy. The results are in agreement with gel analysis and gel transfer hybridization. One type of ribosomal DNA repeating unit contains four cleavage sites for EcoRI. Two of these cuts are located in the genes coding for 28 S and 18 S rRNA, while the other two are in the non-transcribed spacer. Thus, one of the restriction fragments generated contains non-transcribed spacer sequences only and is not detected by gel transfer hybridization if labeled rRNA is used as the hybridization probe. A second type of repeating unit lacks one of the EcoRI cleavage sites within the non-transcribed spacer. This indicates that sequence heterogeneity exists in human rDNA spacers. R-loop mapping of high molecular weight rDNA in the electron microscope reveals that the majority of repeats are rather uniform in length. The average size of 22 repeats was 43.65(±1.27) kb. Two repeats were found with lengths of 28.6 and 53.9 kb, respectively. This, and additional evidence from gels, indicates that some length heterogeneity does exist in the non-transcribed spacer. The structure of the human rDNA repeat is summarized in Figure 10.  相似文献   

15.
Fine structure of polyoma virus DNA.   总被引:7,自引:0,他引:7  
A fine structure map of polyoma DNA has been made based on cleavage with a number of restriction endonucleases (including HaeII and III, BamI, HindII and III, BumI, HpaII, and in part, HphI) and depurination of wild-type DNA, the eight HpaII restriction fragments and some HaeIII fragments. This analysis has made possible some correlation with simian virus 40 DNA, and has facilitated detailed examination of various polyoma strains and variants. Sequences from the region of the origin of DNA replication have been examined.  相似文献   

16.
The nucleotide sequence of the five regions of homologous DNA in the genome of Autographa californica nuclear polyhedrosis virus DNA was determined. The homology of repeated sequences within a region was 65 to 87%, and the consensus sequences for each region were 88% homologous to each other. Sequences proximal to the EcoRI sites were most conserved, while the distal sequences were least conserved. The EcoRI sites formed the core of a 28-base-pair imperfect inverted repeat. All homologous regions functioned as enhancers in a transient expression assay. A single EcoRI minifragment located between EcoRI-Q and -L enhanced the expression of 39CAT as efficiently as the regions containing numerous EcoRI repeats did.  相似文献   

17.
Chloroplast DNA variation in pearl millet and related species   总被引:4,自引:0,他引:4  
Clegg MT  Rawson JR  Thomas K 《Genetics》1984,106(3):449-461
The evolution of specific regions of the chloroplast genome was studied in five grass species in the genus Pennisetum, including pearl millet, and one species from a related genus (Cenchrus). Three different regions of the chloroplast DNA were investigated. The first region included a 12-kilobase pair (kbp) EcoRI fragment containing the 23S, 16S and 5S ribosomal RNA genes, which is part of a larger duplicated region of reverse orientation. The second region was contained in a 21-kbp Sa/I fragment, which spans the short single-copy sequence separating the two reverse repeat structures and which overlaps the duplicated copies of the 12-kbp Eco RI fragment. The third region was a 6-kbp EcoRI fragment located in the large single-copy region of the chloroplast genome. Together these regions account for slightly less than 25% of the chloroplast genome. Each of these DNA fragments was cloned and used as hybridization probes to determine the distribution of homologous DNA fragments generated by various restriction endonuclease digests.—A survey of 12 geographically diverse collections of pearl millet showed no indication of chloroplast DNA sequence polymorphism, despite moderate levels of nuclear-encoded enzyme polymorphism. Interspecific and intergeneric differences were found for restriction endonuclease sites in both the small and the large single-copy regions of the chloroplast genome. The reverse repeat structure showed identical restriction site distributions in all materials surveyed. These results suggest that the reverse repeat region is differentially conserved during the evolution of the chloroplast genome.  相似文献   

18.
A class of precursor DNA (pDNA) II molecules has been identified as the immediate precursor of simian virus 40 DNA I. A pDNA II molecule contains a strand of newly synthesized DNA with an interruption located in the region where DNA synthesis terminates (4). These pDNA II molecules have been isolated and further characterized. They are converted to covalently closed structures (simian virus 40 DNA I) only when they are treated in vitro with both T4 DNA polymerase and Escherichia coli ligase. After in vitro repair of pDNA II with T4 DNA polymerase and nucleoside triphosphates, approximately 7 mol of alpha-[32P]dATP is incorporated per mol of DNA II. Alkaline sucrose analysis of these gap-filled molecules, after they have been cleaved with Eco RI restriction endonuclease, has demonstrated that gaps are specifically located in the termination region. alpha-[32P]dATP is incorporated equally into the two labeled products that are generated by RI cleavage of these molecules. This indicates the presence of gaps in both the newly synthesized plus the minus strands. Electrophoretic analysis of the gap-filled molecules, after they have been cleaved with endonuclease Hind, has shown that gaps are localized in Hind fragments G and B and to a minor degree in fragment J. pDNA II molecules have the following properties. There is a gap in the newly synthesized linear DNA strand contained in the pDNA II molecule. Nicked pDNA II molecules cannot be detected. The two molecules that arise by segregation contain gaps in both of the complementary strands. Based on the amount of alpha-[32P]dATP incorporated and the rate of exonuclease III digestion of gap-filled molecules, it is estimated that the size of the gaps is between 22 and 73 nucleotides. Models for termination of DNA synthesis are proposed based on these findings.  相似文献   

19.
Despite the fact that its DNA carries six EcoRI cleavage sites, bacteriophage T5 is able to grow on an EcoRI restricting host, suggesting that it specifies a restriction protection system. In the hope of identifying this protection system, mutants of T5 have been isolated which are unable to grow on an EcoRI restricting host. Analysis of the DNA of such mutants shows that they have each acquired two new EcoRI sites per molecule as a consequence of a single EcoRI site (ris) mutation located in the terminally repetitious, first step transfer (FST) region of the genome. The EcoRI sites generated by the ris mutations differ from the natural EcoRI sites in that the latter are situated on the second step transfer (SST) DNA, which suggests that the in vivo sensitivity of ris mutants is a consequence of having an EcoRI site on the FST DNA. This is understandable, if the hypothetical restriction protection genes are also located on the FST DNA. While expression of these genes would protect natural sites on the SST DNA, the ris sites would, on the contrary, enter an environment in which the protection, products had not yet been synthesized.Construction of double and triple ris mutants has allowed the ordering of the ris sites and the construction of an EcoRI restriction map of the FST region. In addition, the ris mutants allow estimation of the size of the terminal repetition of T5 DNA as 5.9 × 106 to 6.0 × 106 daltons. Correlation of the physical map of the FST region with the already established genetic map of this region allows orientation of the pre-early genes on the genetic and physical maps, and approximate localization of two amber mutations on the physical map.  相似文献   

20.
The break in the complementary DNA strand of early G4 replicative form II DNA (RFII) and in the viral DNA strand of late RFII DNA was located using two single cleavage restriction enzymes (EcoRI and PstI) and by limited nick translation of the break using DNA polymerase I and 32P-labelled deoxyribonucleotides followed by digestion with the restriction enzymes HaeIII and HindII. The break in the complementary DNA strand was unique and in HaeIII Z5 close to the EcoRI cleavage site whereas the break in the viral DNA strand was on the other side of the molecule in HaeIII Z2 approxiately 50% away from the EcoRI cleavage site. Distribution of a short 3H pulse in early G4 replicating intermediates that were synthesising both DNA strands at the same time showed that synthesis of the strands started on opposite sides of the molecule and proceeded in opposite convergent directions, suggesting that initiation of synthesis of the two strands was independent and not unified in a single growing fork.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号