首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Amyloid fibrils are ordered β-sheet protein or peptide polymers. The benzothiazole dye Thioflavin-T (ThT) shows a strong increase in fluorescence upon binding to amyloid fibrils and has hence become the most commonly used amyloid-specific dye. In spite of this widespread use, the mechanism underlying specific binding and fluorescence enhancement upon interaction with amyloid fibrils remains largely unknown. Recent contradictory reports have proposed radically different modes of binding. We have studied the interaction of ThT with fibrils of the prion forming domain of the fungal HET-s prion protein assembled at pH 2 in order to try to gain some insight into the general mechanism of ThT-binding and fluorescence. We found that ThT does not bind to HET-s(218–289) fibrils as a micelle as previously proposed in the case of insulin fibrils. We have measured binding kinetics, affinity and stoichiometry at pH values above and below the pI of the HET-s(218–289) fibrils and found that binding is dramatically affected by pH and ionic strength. Binding is poor at acidic pH, presumably as a result of repulsive electrostatic interaction between the positively charged ThT molecule and the fibril surface. Finally, we found that ThT acquires chiral properties when it is fibril-bound. These results are discussed in relation to the different ThT-binding modes that have been proposed.  相似文献   

2.
The infectious agent of transmissible spongiform encephalopathies (TSE) has been considered to be PrP(SC), a structural isoform of cellular prion protein PrP(C). PrP(SC) can exist as oligomers and/or as amyloid polymers. Nucleic acids induce structural conversion of recombinant prion protein PrP and PrP(C) to PrP(SC) form in solution and in vitro. Here, we report that nucleic acids, by interacting with PrP in solution, produce amyloid fibril and fibres of different morphologies, similar to those identified in the diseased brains. In addition, the same interaction produces polymer lattices and spherical amyloids of different dimensions (15-150 nm in diameters). The polymer lattices show apparent morphological similarity to the two-dimensional amyloid crystals obtained from linear amyloids isolated in vivo. The spherical amyloids structurally resemble "spherical particles" observed in natural spongiform encephalopathy (SE) and in scrapie-infected brains (TSE). We suggest that spherical amyloids, PrP(SC)-amylospheroids, are probable constituents of the coat of the spherical particles found in vivo and the latter can act as protective coats of the SE and TSE agents in vivo.  相似文献   

3.
4.
The genome of the filamentous ascomycetePodospora anserina contains at least four non-adjacent regions that are homologous to the laccase gene ofNeurospora crassa. One of these regions contains a gene (lac2) encoding a protein that displays 62% identity with theN. crassa laccase. In shaken cultures,lac2 mRNA is present at low basal levels throughout the growth phase but increases at least 20-fold at the beginning of the autolytic phase and decreases again thereafter. Addition of aromatic xenobiotics (guaiacol, hydroquinone, benzoquinone) to the medium during the growth phase results in a rapid, drastic and temporary increase in the abundance oflac2 mRNA. The promoter region oflac2 contains two sequences which display complete homology with the eukaryotic Xenobiotic Responsive Element and two sequences homologous to the eukaryotic Antioxidant Responsive Element. The identity and function of the laccase encoded bylac2 are discussed.  相似文献   

5.
Lalucque H  Malagnac F  Brun S  Kicka S  Silar P 《Genetics》2012,191(2):419-433
The Podospora anserina PaMpk1 MAP kinase (MAPK) signaling pathway can generate a cytoplasmic and infectious element resembling prions. When present in the cells, this C element causes the crippled growth (CG) cell degeneration. CG results from the inappropriate autocatalytic activation of the PaMpk1 MAPK pathway during growth, whereas this cascade normally signals stationary phase. Little is known about the control of such prion-like hereditary units involved in regulatory inheritance. Here, we show that another MAPK pathway, PaMpk2, is crucial at every stage of the fungus life cycle, in particular those controlled by PaMpk1 during stationary phase, which includes the generation of C. Inactivation of the third P. anserina MAPK pathway, PaMpk3, has no effect on the development of the fungus. Mutants of MAPK, MAPK kinase, and MAPK kinase kinase of the PaMpk2 pathway are unable to present CG. This inability likely relies upon an incorrect activation of PaMpk1, although this MAPK is normally phosphorylated in the mutants. In PaMpk2 null mutants, hyphae are abnormal and PaMpk1 is mislocalized. Correspondingly, stationary phase differentiations controlled by PaMpk1 are defective in the mutants of the PaMpk2 cascade. Constitutive activation of the PaMpk2 pathway mimics in many ways its inactivation, including an effect on PaMpk1 localization. Analysis of double and triple mutants inactivated for two or all three MAPK genes undercover new growth and differentiation phenotypes, suggesting overlapping roles. Our data underscore the complex regulation of a prion-like element in a model organism.  相似文献   

6.
    
Three recently isolated wild-type strains of the ascomycete Podospora anserina were analyzed for the presence of linear mitochondrial plasmids. In one of these strains, designated Wa6, at least 12 distinct plasmid-like elements were identified. From molecular analyses a minimum number of 78 individual linear molecules with proteins bound to their 5 ends was estimated. In addition, the different members of this family of typical linear plasmids were shown to possess a common central region and terminal sequences which differ from one plasmid to another due to the presence of different numbers of a 2.4 kb sequence module. Finally, the pWa6 plasmids share a high degree of sequence similarity with pAL2-1, a linear plasmid previously identified in mitochondria of a long-lived mutant of P.anserina. A mechanism is proposed which explains the generation of these distinct, closely related extrachromosomal genetic traits.  相似文献   

7.
In Podospora anserina three laccase activities (I, II and III) were identified. Present results show the existence of an additional lacaase (an anodic protein; MW 80,000; Rf 0.07). Laccase IV derived from the dissociation at acid pH (4.5) of a protein which showed identical molecular weight (390,000) and Rf (0.1) to the oligomeric laccase I. The recovery of laccase I activity when starting from laccase IV (purified by means of isoelectric focusing) suggests that laccase I itself was the source of laccase IV. In turn, laccase IV gave rise to the laccase III after electrophoresis or dialysis at basic pH (8.5).  相似文献   

8.
In the filamentous fungus Podospora anserina, many pigmentation mutations map to the median region of the complex locus ‘14’, called segment ‘29’. The data presented in this paper show that segment 29 corresponds to a gene encoding a polyketide synthase, designated PaPKS1, and identifies two mutations that completely or partially abolish the activity of the PaPKS1 polypeptide. We present evidence that the P. anserina green pigment is a (DHN)-melanin. Using the powerful genetic system of PaPKS1 cloning, we demonstrate that in P. anserina trans-duplicated sequences are subject to the RIP process as previously demonstrated for the cis-duplicated regions.  相似文献   

9.
Multicopper oxidases (MCO) catalyze the biological oxidation of various aromatic substrates and have been identified in plants, insects, bacteria, and wood rotting fungi. In nature, they are involved in biodegradation of biopolymers such as lignin and humic compounds, but have also been tested for various industrial applications. In fungi, MCOs have been shown to play important roles during their life cycles, such as in fruiting body formation, pigment formation and pathogenicity. Coprophilous fungi, which grow on the dung of herbivores, appear to encode an unexpectedly high number of enzymes capable of at least partly degrading lignin. This study compared the MCO-coding capacity of the coprophilous filamentous ascomycetes Podospora anserina and Sordaria macrospora with closely related non-coprophilous members of the order Sordariales. An increase of MCO genes in coprophilic members of the Sordariales most probably occurred by gene duplication and horizontal gene transfer events.  相似文献   

10.
Yeast prion [PSI+] is a self-perpetuating amyloid of the translational termination factor Sup35. Although [PSI+] propagation is modulated by heat shock proteins (Hsps), high temperature was previously reported to have little or no effect on [PSI+]. Our results show that short-term exposure of exponentially growing yeast culture to mild heat shock, followed by immediate resumption of growth, leads to [PSI+] destabilization, sometimes persisting for several cell divisions after heat shock. Prion loss occurring in the first division after heat shock is preferentially detected in a daughter cell, indicating the impairment of prion segregation that results in asymmetric prion distribution between a mother cell and a bud. Longer heat shock or prolonged incubation in the absence of nutrients after heat shock led to [PSI+] recovery. Both prion destabilization and recovery during heat shock depend on protein synthesis. Maximal prion destabilization coincides with maximal imbalance between Hsp104 and other Hsps such as Hsp70-Ssa. Deletions of individual SSA genes increase prion destabilization and/or counteract recovery. The dynamics of prion aggregation during destabilization and recovery are consistent with the notion that efficient prion fragmentation and segregation require a proper balance between Hsp104 and other (e.g., Hsp70-Ssa) chaperones. In contrast to heat shock, [PSI+] destabilization by osmotic stressors does not always depend on cell proliferation and/or protein synthesis, indicating that different stresses may impact the prion via different mechanisms. Our data demonstrate that heat stress causes asymmetric prion distribution in a cell division and confirm that the effects of Hsps on prions are physiologically relevant.  相似文献   

11.
Genetic analysis of cycloheximide-resistant mutants has shown that at least three genes control the resistance to cycloheximide in Podospora anserina and that the antibiotic resistance is recessive to sensitivity. In vitro and in vivo studies of protein synthesis indicated that for two mutants cycloheximide resistance is associated with the ribosomes. For one of these mutants, the elongation step in protein biosynthesis is insensitive to cycloheximide over a wide range of concentration. In this mutant the resistance to cycloheximide is a property of the 60S subunit.This work was supported by the Centre National de la Recherche Scientifique ERA No. 485.  相似文献   

12.
13.
The process of amyloid polymerisation raises keen interest in particular because of the biomedical impact of this process. A variety of analytical methods have been developed to monitor amyloid formation. Thioflavin T (ThT) is the most commonly used dye for detection of amyloid aggregation. Nevertheless, ThT fluorescence enhancement is strongly dependent of fibril morphology. In this study using the HET-s prion fibril model, we show that amyloid formation can be monitored by measuring ThT fluorescence anisotropy. Kinetic parameters obtained by this method are identical to those determined by CD spectrometry. We propose that ThT anisotropy represent an interesting, simple and alternative technique to analyze the amyloid formation process.  相似文献   

14.
A Podospora anserina BAC library of 4800 clones has been constructed in the vector pBHYG allowing direct selection in fungi. Screening of the BAC collection for centromeric sequences of chromosome V allowed the recovery of clones localized on either sides of the centromere, but no BAC clone was found to contain the centromere. Seven BAC clones containing 322,195 and 156,244bp from either sides of the centromeric region were sequenced and annotated. One 5S rRNA gene, 5 tRNA genes, and 163 putative coding sequences (CDS) were identified. Among these, only six CDS seem specific to P. anserina. The gene density in the centromeric region is approximately one gene every 2.8kb. Extrapolation of this gene density to the whole genome of P. anserina suggests that the genome contains about 11,000 genes. Synteny analyses between P. anserina and Neurospora crassa show that co-linearity extends at the most to a few genes, suggesting rapid genome rearrangements between these two species.  相似文献   

15.
16.
    
The linear mitochondrial plasmid pAL2-1 of the long-lived mutant AL2 of Podospora anserina was demonstrated to be able to integrate into the high molecular weight mitochondrial DNA (mtDNA). Hybridization analysis and densitometric evaluation of the mitochondrial genome isolated from cultures of different ages revealed that the mtDNA is highly stable during the whole life span of the mutant. In addition, and in sharp contrast to the situation in certain senescence-prone Neurospora strains, the mutated P. anserina mtDNA molecules containing integrated plasmid copies are not suppressive to wild-type genomes. As demonstrated by hybridization and polymerase chain reaction (PCR) analysis, the proportion of mtDNA molecules affected by the integration of pAL2-1 fluctuates between 10% and 50%. Comparative sequence analysis of free and integrated plasmid copies revealed four differences within the terminal inverted repeats (TIRs). These point mutations are not caused by the integration event since they occur subsequent to integration and at various ages. Interestingly, both repeats contain identical sequences indicating that the mechanism involved in the maintenance of perfect TIRs is active on both free and integrated plasmid copies. Finally, in reciprocal crosses between AL2 and the wild-type strain A, some abnormal progeny were obtained. One group of strains did not contain detectable amounts of plasmid pAL2-1, although the mtDNA was clearly of the type found in the long-lived mutant AL2. These strains exhibited a short-lived phenotype. In contrast, one strain was selected that was found to contain wild-type A-specific mitochondrial genomes and traces of pAL2-1. This strain was characterized by an increased life span. Altogether these data suggest that the linear plasmid pAL2-1 is involved in the expression of longevity in mutant AL2.  相似文献   

17.
18.
Prion diseases, or transmissible spongiform encephalopathies (TSEs) are progressive, fatal neurodegenerative diseases with no effective treatment. The pathology of these diseases involves the conversion of a protease sensitive form of the cellular prion protein (PrPC) into a protease resistant infectious form (PrPres). The efficiency of this conversion is predicated upon a number of factors, most notably a strong homology between cellular PrPC and PrPres. In our recently published study, we infected mice with the RML-Chandler strain of scrapie and treated them with heterologous hamster prion proteins. This treatment was seen to reduce clinical signs of prion disease, to delay the onset of clinical symptoms and to prolong survival. In this current article we discuss potential mechanisms of action of treatment with heterologous prion proteins. We also discuss potential extensions of these studies using a heterologous rabbit PrP-based treatment strategy or a peptide based strategy, and improvement of treatment delivery including a lentiviral-based system.  相似文献   

19.
20.
Prions are infectious proteins and over the past few decades, some prions have become renowned for their causative role in several neurodegenerative diseases in animals and humans. Since their discovery, the mechanisms and mode of transmission and molecular structure of prions have begun to be established. There is, however, still much to be elucidated about prion diseases, including the development of potential therapeutic strategies for treatment. The significance of prion disease is discussed here, including the categories of human and animal prion diseases, disease transmission, disease progression and the development of symptoms and potential future strategies for treatment. Furthermore, the structure and function of the normal cellular prion protein (PrPC) and its importance in not only in prion disease development, but also in diseases such as cancer and Alzheimer's disease will also be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号