首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In fused interphase-mitotic cells, either interphase nuclei are induced to premature chromosome condensation (PCC) or mitotic chromosomes are induced to telophase-like nuclei (TLN) formation. This study concerns structural and functional changes in centrioles of fused cells in which PCC or TLN are induced. Embryonic pig kidney cells were fused using a modified PEG-DMSO-serum method. Cell cycle period of the nuclei was determined before cell fusion using double-labeling autoradiography. Polykaryons containing desirable type of PCC or interphase nuclear combination in TLN were selected on the basis of isotope labeling after being embedded in epon. Selected cells were cut into serial sections and studied under electron microscope. The data obtained showed that centrioles at every interphase period undergo mitotic activation when their nuclei are induced to PCC. They acquire fibrillar halo and form half-spindles. Daughter centrioles at G1, S and G2 periods are also capable of mitotic activation when separated from their mother centriole. Inert centrioles were found in some cells with G1-PCC. When mitotic nuclei are induced to TLN formation, their centrioles also become inactivated. They lose fibrillar halo and mitotic spindles break down. Some mitotic centrioles develop features characteristic of interphase period such as satellites and vacuoles. Induced nuclear and centriolar changes are simultaneous and may be controlled by the same factor. Mitotic factor of mitotic cell partner which induces PCC may also induce interphase centrioles to mitotic activation. Degradation of the mitotic factor leading to TLN formation may also cause the loss of the mitotic activity of centrioles and disorganization of mitotic spindles.  相似文献   

2.
The structure of the cellular center in polyploid hepatocytes of intact and regenerating liver of adult mice has been studied. It was shown that the structure of the centriolar complex depends on stages of the cellular cycle. No pericentriolar structures (such as satellites, appendages and others) and cytoplasmic microtubules were found in the centriolar complex within G0-period. The satellites and appendages are formed in the half of the centrioles within G1-period. The microtubules can branch off some satellites; the daughter centrioles begin to form within S-period; there are diplosomes in the cells within G2-period, some mother centrioles are surrounded with the fine fibrillar halo. It is concluded that the structure of the centriolar complex within G0-period is distinguished by that within G1-period. The structure of the centriolar complex in polyploid hepatocytes has the same feature of reorganization in certain interphase periods of the cell cycle as in diploid cells of some cultured cells and the thyroid epithelium.  相似文献   

3.
The centriole pair in animals shows duplication and structural maturation at specific cell cycle points. In G1, a cell has two centrioles. One of the centrioles is mature and was generated at least two cell cycles ago. The other centriole was produced in the previous cell cycle and is immature. Both centrioles then nucleate one procentriole each which subsequently elongate to full-length centrioles, usually in S or G2 phase. However, the point in the cell cycle at which maturation of the immature centriole occurs is open to question. Furthermore, the molecular events underlying this process are entirely unknown. Here, using monoclonal and polyclonal antibody approaches, we describe for the first time a molecular marker which localizes exclusively to one centriole of the centriolar pair and provides biochemical evidence that the two centrioles are different. Moreover, this 96-kD protein, which we name Cenexin (derived from the Latin, senex for "old man," and Cenexin for centriole) defines very precisely the mature centriole of a pair and is acquired by the immature centriole at the G2/M transition in prophase. Thus the acquisition of Cenexin marks the functional maturation of the centriole and may indicate a change in centriolar potential such as its ability to act as a basal body for axoneme development or as a congregating site for microtubule-organizing material.  相似文献   

4.
INDEPENDENCE OF CENTRIOLE FORMATION AND DNA SYNTHESIS   总被引:13,自引:10,他引:3       下载免费PDF全文
The temporal relationship between cell cycle events and centriole duplication was investigated electron microscopically in L cells synchronized by mechanically selecting mitotic cells. The two mature centrioles which each cell received at telophase migrated together from the side of the telophase nucleus distal to the stem body around to a region of the cytoplasm near the stem body and then into a groovelike indention in the early G1 nucleus, where they were found throughout interphase. Procentrioles appeared in association with each mature centriole at times varying from 4 to 12 h after mitosis. Since S phase was found to begin on the average about 9 h after mitotic selection, it appeared that cells generated procentrioles late in G1 or early in S. During prophase, the two centriolar duplexes migrated to opposite sides of the nucleus and the daughter centrioles elongated to the mature length. To ascertain whether any aspect of centriolar duplication was contingent upon nuclear DNA synthesis, arabinosyl cytosine was added to mitotic cells at a concentration which inhibited cellular DNA synthesis by more than 99%. Though cells were thus prevented from entering S phase, the course of procentriole formation was not detectibly affected. However, cells were inhibited from proceeding to the next mitosis, and the centriolar elongation and migration normally associated with prophase did not occur.  相似文献   

5.
Centrosome includes two centrioles and is a structural basis of mitotic spindle pole. Duplication of this organelle and doubling of chromosomes quantity during DNA replication are two principal events of cell cycle in the course of preparation for cell division. In this work, cells of pig kidney embryonic cell line PE (SPEV) were individually monitored after mitosis and procentriole appearance was detected by electron microscopy as soon as 5–6 h after mitosis. This period was 1–2 h shorter than minimal duration of G1-phase in PE cell line. Ultrastructural analysis of centrosomes in the cells with known “cell cycle age” in combination with autoradiography study of the same cells using 3H-thimidine directly confirmed that duplication of centrioles started earlier than cells entered in S-phase of cell cycle, i.e., preceded the DNA replication.  相似文献   

6.
Centriole duplication begins with the formation of a single procentriole next to a preexisting centriole. CPAP (centrosomal protein 4.1–associated protein) was previously reported to participate in centriole elongation. Here, we show that CEP120 is a cell cycle–regulated protein that directly interacts with CPAP and is required for centriole duplication. CEP120 levels increased gradually from early S to G2/M and decreased significantly after mitosis. Forced overexpression of either CEP120 or CPAP not only induced the assembly of overly long centrioles but also produced atypical supernumerary centrioles that grew from these long centrioles. Depletion of CEP120 inhibited CPAP-induced centriole elongation and vice versa, implying that these proteins work together to regulate centriole elongation. Furthermore, CEP120 was found to contain an N-terminal microtubule-binding domain, a C-terminal dimerization domain, and a centriolar localization domain. Overexpression of a microtubule binding–defective CEP120-K76A mutant significantly suppressed the formation of elongated centrioles. Together, our results indicate that CEP120 is a CPAP-interacting protein that positively regulates centriole elongation.  相似文献   

7.
8.
Control of centrosome duplication is tightly linked with the progression of the cell cycle. Recent studies suggest that the fundamental process of centriole duplication is evolutionally conserved. Here, we identified c entrosomal P 4.1‐a ssociated p rotein (CPAP), a human homologue of SAS‐4, as a substrate of PLK2 whose activity oscillates during the cell cycle. PLK2 phosphorylates the S589 and S595 residues of CPAP in vitro and in vivo. This phosphorylation is critical for procentriole formation during the centrosome cycle. PLK4 also phosphorylates S595 of CPAP, but PLK4 phosphorylation is not a critical step in the PLK4 function in procentriole assembly. CPAP is phosphorylated in a cell cycle stage‐specific manner, so that its phosphorylation increases at the G1/S transition phase and decreases during the exit of mitosis. Phosphorylated CPAP is preferentially located at the procentriole. Furthermore, overexpression of a phospho‐resistant CPAP mutant resulted in the failure to form elongated centrioles. On the basis of these results, we propose that phosphorylated CPAP is involved in procentriole assembly, possibly for centriole elongation. This work demonstrates an example of how procentriole formation is linked to the progression of the cell cycle.  相似文献   

9.
Microtubule-organizing centers recruit α- and β-tubulin polypeptides for microtubule nucleation. Tubulin synthesis is complex, requiring five specific cofactors, designated tubulin cofactors (TBCs) A–E, which contribute to various aspects of microtubule dynamics in vivo. Here, we show that tubulin cofactor D (TBCD) is concentrated at the centrosome and midbody, where it participates in centriologenesis, spindle organization, and cell abscission. TBCD exhibits a cell-cycle-specific pattern, localizing on the daughter centriole at G1 and on procentrioles by S, and disappearing from older centrioles at telophase as the protein is recruited to the midbody. Our data show that TBCD overexpression results in microtubule release from the centrosome and G1 arrest, whereas its depletion produces mitotic aberrations and incomplete microtubule retraction at the midbody during cytokinesis. TBCD is recruited to the centriole replication site at the onset of the centrosome duplication cycle. A role in centriologenesis is further supported in differentiating ciliated cells, where TBCD is organized into “centriolar rosettes”. These data suggest that TBCD participates in both canonical and de novo centriolar assembly pathways.  相似文献   

10.
Unlike somatic cells mitosis, germ cell meiosis consists of 2 consecutive rounds of division that segregate homologous chromosomes and sister chromatids, respectively. The meiotic oocyte is characterized by an absence of centrioles and asymmetric division. Centriolin is a relatively novel centriolar protein that functions in mitotic cell cycle progression and cytokinesis. Here, we explored the function of centriolin in meiosis and showed that it is localized to meiotic spindles and concentrated at the spindle poles and midbody during oocyte meiotic maturation. Unexpectedly, knockdown of centriolin in oocytes with either siRNA or Morpholino micro-injection, did not affect meiotic spindle organization, cell cycle progression, or cytokinesis (as indicated by polar body emission), but led to a failure of peripheral meiotic spindle migration, large polar body emission, and 2-cell like oocytes. These data suggest that, unlike in mitotic cells, the centriolar protein centriolin does not regulate cytokinesis, but plays an important role in regulating asymmetric division of meiotic oocytes.  相似文献   

11.
Control of first cleavage in single-cell reconstituted mouse embryos   总被引:3,自引:0,他引:3  
Karyoplasts derived from mouse embryos at the initial and final stages of the first or second mitotic interphase were fused to early and late enucleated 1-cell embryos. The time of cleavage of reconstituted and control embryos was recorded at 1-h or 8-h intervals after manipulation. This enabled assessment of nuclear and cytoplasmic control over the mitotic apparatus of the 1-cell embryo. Early nuclei from 1- or 2-cell embryos fused to late enucleated embryos delayed cleavage but for only a few hours. However, late nuclei fused to early enucleated embryos were unable to advance the cytoplasmic timing of the next cleavage division. Furthermore, these reconstituted embryos stayed in interphase longer than did controls and many embryos with nuclei derived from late 2-cell embryos failed to cleave. These findings suggest that, allowing for a short period, early nuclei can synchronize with late cytoplasm with no major damage to the cleavage apparatus. It is proposed that this period is required for the completion of DNA synthesis by the early nuclei. However, late nuclei cannot induce mitosis before the expected cytoplasmic time, and, with 2-cell karyoplasts, this interaction causes many embryos to 'block' in interphase, without cleaving, suggesting incompatible nucleo-cytoplasmic interactions between late 2-cell karyoplast and early 1-cell stage cytoplasm.  相似文献   

12.
Centrioles in the cell cycle. I. Epithelial cells   总被引:20,自引:14,他引:6       下载免费PDF全文
A study was made of the structure of the centrosome in the cell cycle in a nonsynchronous culture of pig kidney embryo (PE) cells. In the spindle pole of the metaphase cell there are two mutually perpendicular centrioles (mother and daughter) which differ in their ultrastructure. An electron-dense halo, which surrounds only the mother centriole and is the site where spindle microtubules converge, disappears at the end of telophase. In metaphase and anaphase, the mother centriole is situated perpendicular to the spindle axis. At the beginning of the G1 period, pericentriolar satellites are formed on the mother centriole with microtubules attached to them; the two centrioles diverge. The structures of the two centrioles differ throughout interphase; the mother centriole has appendages, the daughter does not. Replication of the centrioles occurs approximately in the middle of the S period. The structure of the procentrioles differs sharply from that of the mature centriole. Elongation of procentrioles is completed in prometaphase, and their structure undergoes a number of successive changes. In the G2 period, pericentriolar satellites disappear and some time later a fibrillar halo is formed on both mother centrioles, i.e., spindle poles begin to form. In the cells that have left the mitotic cycle (G0 period), replication of centrioles does not take place; in many cells, a cilium is formed on the mother centriole. In a small number of cells a cilium is formed in the S and G2 periods, but unlike the cilium in the G0 period it does not reach the surface of the cell. In all cases, it locates on the centriole with appendages. At the beginning of the G1 period, during the G2 period, and in nonciliated cells in the G0 period, one of the centrioles is situated perpendicular to the substrate. On the whole, it takes a mature centriole a cycle and a half to form in PE cells.  相似文献   

13.

Background

Centrioles are microtubule-based cylindrical structures composed of nine triplet tubules and are required for the formation of the centrosome, flagella and cilia. Despite theirs importance, centriole biogenesis is poorly understood. Centrosome duplication is initiated at the G1/S transition by the sequential recruitment of a set of conserved proteins under the control of the kinase Plk4. Subsequently, the procentriole is assembled by the polymerization of centriolar tubules via an unknown mechanism involving several tubulin paralogs.

Methodology/Principal Findings

Here, we developed a cellular assay to study centrosome duplication and procentriole stability based on its sensitivity to the microtubule-depolymerizing drug nocodazole. By using RNA interference experiments, we show that the stability of growing procentrioles is regulated by the microtubule-stabilizing protein CAP350, independently of hSAS-6 and CPAP which initiate procentriole growth. Furthermore, our analysis reveals the critical role of centriolar tubule stability for an efficient procentriole growth.

Conclusions/Significance

CAP350 belongs to a new class of proteins which associate and stabilize centriolar tubules to control centriole duplication.  相似文献   

14.
Serial ultrathin sections were used to study the formation of the primary cilium and the centriolar apparatus, basal body, and centriole in the neuroepithelial primordial cell of the embryonic nervous system in the mouse. At the end of mitosis, the centrioles seem to migrate toward the ventricular process of the neuroepithelial cell, near the ventricular surface. One of these centrioles, the nearest to the ventricular surface, begins to mature to form a basal body, since its tip is capped by a vesicle probably originating in the cytoplasm. This vesicle fuses with the plasmalemma and the cilium growth by the centrifugal extension of the 9 sets of microtubule doublets. These 9 sets invade the thick base of the cilium which is initially capped by a ball-shaped tip with the appearance of a mushroom cilium. The secondary extension of 7, then 5, and finally 2 sets of microtubule doublets contribute to form the tip of the mature cilium, which is associated with a mature centriolar apparatus formed by a basal body and a centriole. Centriologenesis occurs before mitosis and is concomitant with the progressive resorption of the cilium. The daughter centriole, or procentriole, begins to take form near the tips of fibrils that extend perpendicularly and at a short distance from the wall of the parent centriole. Osmiophilic material accumulates around these fibrils, and gives rise to the microtubules of the mature daughter centriole. These centrioles formed by a centriolar process are further engaged in mitosis, after the total resorption of the cilium. This pattern of development suggests that in the primordial cells of the embryonic nervous system, centriologenesis and ciliogenesis are 2 independent phenomena.  相似文献   

15.
Growing mouse oocytes are physiologically arrested in the G2 phase of prophase of the first meiotic division. Growing oocytes were isolated from ovaries of 9- to 12-day-old mice and fused with parthenogenetic one-cell eggs or two-cell embryos derived from fertilized eggs. Resulting hybrids were injected with Dig-11-dUTP and examined for DNA replication using immunofluorescence. Parthenogenetic one-cell eggs fused at telophase II, G1, and middle-to-late S phase, and also S-phase two-cell blastomeres, were able to trigger DNA synthesis in oocyte germinal vesicle (GV) in the majority of hybrids cultured to the end of the first cell cycle. Activation of replication in the GV occurred within 2-3 h after fusion of growing oocytes with S-phase eggs. We show indirectly that the reactivation of replication in GVs was not dependent on the breakdown of the GV envelope. Although GVs had the ability to renew DNA replication after fusion, the G2 blastomere nuclei were incapable of reinitiating DNA replication under the influence of S-phase one-cell eggs. We hypothesize that the nuclei of growing oocytes arrested in meiotic prophase are in a physiological state that is equivalent to replication-competent G1, and not G2, nuclei.  相似文献   

16.
A centriolar complex comprising a pair of centrioles and a cloud of pericentriolar materials is located at the point of covergence of the microtubules of the mitotic apparatus. The in vitro assembly of microtubules was observed onto these complexes in the 1,400 g supernatant fraction of colcemid-blocked, mitotic HeLa cells lysed into solutions containing tubulin and Triton X-100. Dark-field microscopy provided a convenient means by which this process could be visualized directly. When this 1,400 g supernate was incubated at 30 degrees C and centrifuged into a discontinuous sucrose gradient, a band containing centriolar complexes and assembled microtubles was obtained at 50-60% sucrose interface. Ultrastructual analysis indicated that the majority of the microtubules assembled predominantly from the pericentriolar material but also onto the centrioles. When cells were synchronized by a double thymide block, the assembly of microtubules onto centriolar complexes was observed only in lysates of mitotic cells; no assembly was seen in lysed material of interphase cells. Microtubule assembly occured onto centriolar complexes in solutions of either 100,000 g brain supernate, 2 X cycled tubulin, or purified tubulin dimers. This study demonstrates that the pericentriolar material becomes competent as a microtubule-organizing center (MTOC) at the time of mitosis. With use of the techniques described, a method for the isolation of centriolar complexes may be developed.  相似文献   

17.
The presence of supernumerary centrosomes in cells infected with Chlamydia trachomatis may provide a mechanism to explain the association of C. trachomatis genital infection with cervical cancer. We show that the amplified centrosomal foci induced during a chlamydial infection contain both centriolar and pericentriolar matrix markers, demonstrating that they are bona fide centrosomes. As there were multiple immature centrioles but approximately one mature centriole per cell, aborted cytokinesis alone cannot account for centrosome amplification during a chlamydial infection. Production of supernumerary centrosomes required the kinase activities of Cdk2 and Plk4, which are known regulators of centrosome duplication, and progression through S-phase, which is the stage in the cell cycle when duplication of the centrosome occurs. These requirements indicate that centrosome amplification during a chlamydial infection depends on the host centrosome duplication pathway, which normally produces a single procentriole from each template centriole. However, C. trachomatis induces a loss of numerical control so that multiple procentrioles are formed per template.  相似文献   

18.
19.
Basal body replication during estrogen-driven ciliogenesis in the rhesus monkey (Macaca mulatta) oviduct has been studied by stereomicroscopy, rotation photography, and serial section analysis. Two pathways for basal body production are described: acentriolar basal body formation (major pathway) where procentrioles are generated from a spherical aggregate of fibers; and centriolar basal body formation, where procentrioles are generated by the diplosomal centrioles. In both pathways, the first step in procentriole formation is the arrangement of a fibrous granule precursor into an annulus. A cartwheel structure, present within the lumen of the annulus, is composed of a central cylinder with a core, spoke components, and anchor filaments. Tubule formation consists of an initiation and a growth phase. The A tubule of each triplet set first forms within the wall material of the annulus in juxtaposition to a spoke of the cartwheel. After all nine A tubules are initiated, B and C tubules begin to form. The initiation of all three tubules occurs sequentially around the procentriole. Simultaneous with tubule initiation is a nonsequential growth of each tubule. The tubules lengthen and the procentriole is complete when it is about 200 mµ long. The procentriole increases in length and diameter during its maturation into a basal body. The addition of a basal foot, nine alar sheets, and a rootlet completes the maturation process. Fibrous granules are also closely associated with the formation of these basal body accessory structures.  相似文献   

20.
Plk4-induced centriole biogenesis in human cells   总被引:9,自引:0,他引:9  
We show that overexpression of Polo-like kinase 4 (Plk4) in human cells induces centrosome amplification through the simultaneous generation of multiple procentrioles adjoining each parental centriole. This provided an opportunity for dissecting centriole assembly and characterizing assembly intermediates. Critical components were identified and ordered into an assembly pathway through siRNA and localized through immunoelectron microscopy. Plk4, hSas-6, CPAP, Cep135, gamma-tubulin, and CP110 were required at different stages of procentriole formation and in association with different centriolar structures. Remarkably, hSas-6 associated only transiently with nascent procentrioles, whereas Cep135 and CPAP formed a core structure within the proximal lumen of both parental and nascent centrioles. Finally, CP110 was recruited early and then associated with the growing distal tips, indicating that centrioles elongate through insertion of alpha-/beta-tubulin underneath a CP110 cap. Collectively, these data afford a comprehensive view of the assembly pathway underlying centriole biogenesis in human cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号