首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Specific recognitions of GNRA tetraloops by small helical receptors are among the most widespread long-range packing interactions in large ribozymes. However, in contrast to GYRA and GAAA tetraloops, very few GNRA/receptor interactions have yet been identified to involve GGAA tetraloops in nature. A novel in vitro selection scheme based on a rigid self-assembling tectoRNA scaffold designed for isolation of intermolecular interactions with A-minor motifs has yielded new GGAA tetraloop-binding receptors with affinity in the nanomolar range. One of the selected receptors is a novel 12 nt RNA motif, (CCUGUG ... AUCUGG), that recognizes GGAA tetraloop hairpin with a remarkable specificity and affinity. Its physical and chemical characteristics are comparable to those of the well-studied '11nt' GAAA tetraloop receptor motif. A second less specific motif (CCCAGCCC ... GAUAGGG) binds GGRA tetraloops and appears to be related to group IC3 tetraloop receptors. Mutational, thermodynamic and comparative structural analysis suggests that natural and in vitro selected GNRA receptors can essentially be grouped in two major classes of GNRA binders. New insights about the evolution, recognition and structural modularity of GNRA and A-minor RNA-RNA interactions are proposed.  相似文献   

2.
The NMR structure of the 3' stem-loop (3'SL) from human U4 snRNA was determined to gain insight into the structural basis for conservation of this stem-loop sequence from vertebrates. 3'SL sequences from human, rat, mouse and chicken U4 snRNA each consist of a 7 bp stem capped by a UACG tetraloop. No high resolution structure has previously been reported for a UACG tetraloop. The UACG tetraloop portion of the 3'SL was especially well defined by the NMR data, with a total of 92 NOE-derived restraints (about 15 per residue), including 48 inter-residue restraints (about 8 per residue) for the tetraloop and closing C-G base pair. Distance restraints were derived from NOESY spectra using MARDIGRAS with random error analysis. Refinement of the 20mer RNA hairpin structure was carried out using the programs DYANA and miniCarlo. In the UACG tetraloop, U and G formed a base pair stabilized by two hydrogen bonds, one between the 2'-hydroxyl proton of U and carbonyl oxygen of G, another between the imino proton of G and carbonyl oxygen O2 of U. In addition, the amino group of C formed a hydrogen bond with the phosphate oxygen of A. G adopted a syn orientation about the glycosidic bond, while the sugar puckers of A and C were either C2'-endo or flexible. The conformation of the UACG tetraloop was, overall, similar to that previously reported for UUCG tetraloops, another member of the UNCG class of tetraloops. The presence of an A, rather than a U, at the variable position, however, presents a distinct surface for interaction of the 3'SL tetraloop with either RNA or protein residues that may stabilize interactions important for active spliceosome formation. Such tertiary interactions may explain the conservation of the UACG tetraloop motif in 3'SL sequences from U4 snRNA in vertebrates.  相似文献   

3.
Assembly of the human signal recognition particle (SRP) requires SRP19 protein to bind to helices 6 and 8 of SRP RNA. In the present study, structure of a 29-mer RNA composing the SRP19 binding site in helix 6 was determined by NMR spectroscopy. The two A:C mismatches were continuously stacked to each other and formed wobble type A:C base pairs. The GGAG tetraloop in helix 6 was found to adopt a similar conformation to that of GNRA tetraloop, suggesting that these tetraloops are included in an extensive new motif GNRR. Compared with the crystal structure of helix 6 in complex with SRP19 determined previously, the GGAG tetraloop in the complex was found to adopt a similar conformation to the free form, although the loop structure becomes more open upon SRP19 binding. Thus, SRP19 is thought to recognize the overall fold of the GGAG loop.  相似文献   

4.
NMR and CD data have previously shown the formation of the T(4) tetraloop hairpin in aqueous solutions, as well as the possibility of the B-to-Z transition in its stem in high salt concentration conditions. It has been shown that the stem B-to-Z transition in T(4) hairpins leads to S (south)- to N (north)-type conformational changes in the loop sugars, as well as anti to syn orientations in the loop bases. In this article, we have compared by means of UV absorption, CD, Raman, and Fourier transform infrared (FTIR), the thermodynamic and structural properties of the T(4) and A(4) tetraloop hairpins formed in 5'-d(CGCGCG-TTTT-CGCGCG)-3' and 5'-d(CGCGCG-AAAA-CGCGCG)-3', respectively. In presence of 5M NaClO(4), a complete B-to-Z transition of the stems is first proved by CD spectra. UV melting profiles are consistent with a higher thermal stability of the T(4) hairpin compared to the A(4) hairpin. Order-to-disorder transition of both hairpins has also been analyzed by means of Raman spectra recorded as a function of temperature. A clear Z-to-B transition of the stem has been confirmed in the T(4) hairpin, and not in the A(4) hairpin. With a right-handed stem, Raman and FTIR spectra have confirmed the C2'-endo/anti conformation for all the T(4) loop nucleosides. With a left-handed stem, a part of the T(4) loop sugars adopt a N-type (C3'-endo) conformation, and the C3'-endo/syn conformation seems to be the preferred one for the dA residues involved in the A(4) tetraloop.  相似文献   

5.
The protocol of conformational analysis applied here to ribonucleotide oligomers combines conformational search in the space of torsion angles and energy minimization using the AMBER4.1 force field with a continuum treatment of electrostatic solute-solvent interactions. RNA fragments with 5′-GGGCGNNAGCCU-3′ sequences commonly fold into hairpins with four-membered loops. The combinatorial search for acceptable conformations using the MC-SYM program was restricted to loop nucleotides and yielded roughly 1500 structures being compatible with a double-stranded stem. After energy minimization by the JUMNA program (without applying any experimental constraints), these structures converged into an ensemble of 74 different conformers including 26 structures which contained the sheared G-A base pair observed in experimental studies of GNRA tetraloops. Energetic analysis shows that inclusion of solvent electrostatic effects is critically important for the selection of conformers that agree with experimentally determined structures. The continuum model accounts for solvent polarization by means of the electrostatic reaction field. In the case of GNRA loop sequences, the contributions of the reaction field shift relative stabilities towards conformations showing most of the structural features derived from NMR studies. The agreement of computed conformations with the experimental structures of GAAA, GCAA, and GAGA tetraloops suggests that the continuum treatment of the solvent represents a definitive improvement over methods using simple damping models in electrostatic energy calculations. Application of the procedure described here to the evaluation of the relative stabilities of conformers resulting from searching the conformational space of RNA structural motifs provides some progress in (non-homology based) RNA 3D-structure prediction. Received: 20 January 1999 / Revised version: 4 June 1999 / Accepted: 10 June 1999  相似文献   

6.
Conformational equilibrium within the ubiquitous GNRA tetraloop motif was simulated at the ensemble level, including 10 000 independent all-atom molecular dynamics trajectories totaling over 110 µs of simulation time. This robust sampling reveals a highly dynamic structure comprised of 15 conformational microstates. We assemble a Markov model that includes transitions ranging from the nanosecond to microsecond timescales and is dominated by six key loop conformations that contribute to fluctuations around the native state. Mining of the Protein Data Bank provides an abundance of structures in which GNRA tetraloops participate in tertiary contact formation. Most predominantly observed in the experimental data are interactions of the native loop structure within the minor groove of adjacent helical regions. Additionally, a second trend is observed in which the tetraloop assumes non-native conformations while participating in multiple tertiary contacts, in some cases involving multiple possible loop conformations. This tetraloop flexibility can act to counterbalance the energetic penalty associated with assuming non-native loop structures in forming tertiary contacts. The GNRA motif has thus evolved not only to readily participate in simple tertiary interactions involving native loop structure, but also to easily adapt tetraloop secondary conformation in order to participate in larger, more complex tertiary interactions.  相似文献   

7.
Solution structure of a GAAA tetraloop receptor RNA.   总被引:4,自引:0,他引:4       下载免费PDF全文
S E Butcher  T Dieckmann    J Feigon 《The EMBO journal》1997,16(24):7490-7499
The GAAA tetraloop receptor is an 11-nucleotide RNA sequence that participates in the tertiary folding of a variety of large catalytic RNAs by providing a specific binding site for GAAA tetraloops. Here we report the solution structure of the isolated tetraloop receptor as solved by multidimensional, heteronuclear magnetic resonance spectroscopy. The internal loop of the tetraloop receptor has three adenosines stacked in a cross-strand or zipper-like fashion. This arrangement produces a high degree of base stacking within the asymmetric internal loop without extrahelical bases or kinking the helix. Additional interactions within the internal loop include a U. U mismatch pair and a G.U wobble pair. A comparison with the crystal structure of the receptor RNA bound to its tetraloop shows that a conformational change has to occur upon tetraloop binding, which is in good agreement with previous biochemical data. A model for an alternative binding site within the receptor is proposed based on the NMR structure, phylogenetic data and previous crystallographic structures of tetraloop interactions.  相似文献   

8.
GNRA tetraloops (N is A, C, G, or U; R is A or G) are basic building blocks of RNA structure that often interact with proteins or other RNA structural elements. Understanding sequence-dependent structural variation among different GNRA tetraloops is an important step toward elucidating the molecular basis of specific GNRA tetraloop recognition by proteins and RNAs. Details of the geometry and hydration of this motif have been based on high-resolution crystallographic structures of the GRRA subset of tetraloops; less is known about the GYRA subset (Y is C or U). We report here the structure of a GUAA tetraloop determined to 1.4 A resolution to better define these details and any distinctive features of GYRA tetraloops. The tetraloop is part of a 27-nt structure that mimics the universal sarcin/ricin loop from Escherichia coli 23S ribosomal RNA in which a GUAA tetraloop replaces the conserved GAGA tetraloop. The adenosines of the GUAA tetraloop form an intermolecular contact that is a commonplace RNA tertiary interaction called an A-minor motif. This is the first structure to reveal in great detail the geometry and hydration of a GUAA tetraloop and an A-minor motif. Comparison of tetraloop structures shows a common backbone geometry for each of the eight possible tetraloop sequences and suggests a common hydration. After backbone atom superposition, equivalent bases from different tetraloops unexpectedly depart from coplanarity by as much as 48 degrees. This variation displaces the functional groups of tetraloops implicated in protein and RNA binding, providing a recognition feature.  相似文献   

9.
Experimental and computational studies of the G[UUCG]C RNA tetraloop   总被引:7,自引:0,他引:7  
In prokaryotic ribosomal RNAs, most UUCG tetraloops are closed by a C-G base-pair. However, this preference is greatly reduced in eukaryotic rRNA species where many UUCG tetraloops are closed by G-C base-pairs. Here, biophysical properties of the C[UUCG]G and G[UUCG]C tetraloops are compared, using experimental and computational methods. Thermal denaturation experiments are used to derive thermodynamic parameters for the wild-type G[UUCG]C tetraloop and variants containing single deoxy substitutions in the loop. A comparison with analogous experiments on the C[UUCG]G motif shows that the two RNA species exhibit similar patterns in response to the substitutions, suggesting that their loop structures are similar. This conclusion is supported by NMR data that suggest that the essential UUCG loop structure is maintained in both tetraloops. However, NMR results show that the G[UUCG]C loop structure is disrupted prior to melting of the stem; this behavior is in contrast to the two-state behavior of the C[UUCG]G molecule. Stochastic dynamics simulations using the GB/SA continuum solvation model, run as a function of temperature, show rare conformational transitions in several G[UUCG]C simulations. These results lead to the conclusion that substitution of a G-C for a C-G closing base-pair increases the intrinsic flexibility of the UUCG loop.  相似文献   

10.
We have developed a computational approach for the comparison and classification of RNA loop structures. Hairpin or interior loops identified in atomic resolution RNA structures were intercompared by conformational matching. The root-mean-square deviation (RMSD) values between all pairs of RNA fragments of interest, even if from different molecules, are calculated. Subsequently, cluster analysis is performed on the resulting matrix of RMSD distances using the unweighted pair group method with arithmetic mean (UPGMA). The cluster analysis objectively reveals groups of folds that resemble one another. To demonstrate the utility of the approach, a comprehensive analysis of all the terminal hairpin tetraloops that have been observed in 15 RNA structures that have been determined by X-ray crystallography was undertaken. The method found major clusters corresponding to the well-known GNRA and UNCG types. In addition, two tetraloops with the unusual primary sequence UMAC (M is A or C) were successfully assigned to the GNRA cluster. Larger loop structures were also examined and the clustering results confirmed the occurrence of variations of the GNRA and UNCG tetraloops in these loops and provided a systematic means for locating them. Nineteen examples of larger loops that closely resemble either the GNRA or UNCG tetraloop were found in the large ribosomal RNAs. When the clustering approach was extended to include all structures in the SCOR database, novel relationships were detected including one between the ANYA motif and a less common folding of the GAAA tetraloop sequence.  相似文献   

11.
RNA tetraloops are common secondary structural motifs in many RNAs, especially ribosomal RNAs. There are few studies of small molecule recognition of RNA tetraloops although tetraloops are known to interact with RNA receptors and proteins, and to form nucleation sites for RNA folding. In this paper, we investigate the binding of neomycin, kanamycin, 2,4-diaminoquinazoline, quinacrine, and an aminoacridine derivative (AD1) to a GAAA tetraloop using fluorescence spectroscopy. We have found that AD1 and quinacrine bind to the GAAA tetraloop with the highest affinity of the molecules examined. The equilibrium dissociation constant of the AD1-GAAA tetraloop complex was determined to be 1.6 microM. RNase I and lead acetate footprinting experiments suggested that AD1 binds to the junction between the loop and stem of the GAAA tetraloop.  相似文献   

12.
We introduce the use of commercially available locked nucleic acids (LNAs) as a functional probe in RNA. LNA nucleotides contain a covalent linkage that restricts the pseudorotation phase of the ribose to C3'-endo (A-form). Introduction of an LNA at a single site thus allows the role of ribose structure and dynamics in RNA function to be assessed. We apply LNA probing at multiple sites to analyze self-cleavage in the lead-dependent ribozyme (leadzyme), thermodynamic stability in the UUCG tetraloop, and the kinetics of recognition of U1A protein by U1 snRNA hairpin II. In the leadzyme, locking a single guanosine residue into the C3'-endo pucker increases the catalytic rate by a factor of 20, despite the fact that X-ray crystallographic and NMR structures of the leadzyme ground state reported a C2'-endo conformation at this site. These results strongly suggest that a conformational change at this position is critical for catalytic function. Functional insights obtained in all three systems demonstrate the highly general applicability of LNA probing in analysis of the role of ribose orientation in RNA structure, dynamics, and function.  相似文献   

13.
CUUG loop is one of the most frequently occurring tetraloops in bacterial 16S rRNA. This tetraloop has a high thermodynamic stability as proved by previous UV absorption and NMR experiments. Here, we present our results concerning the thermodynamic and structural features of the 10mer 5′-r(GCG-CUUG-CGC)-3′, forming a highly stable CUUG tetraloop hairpin in aqueous solution, by means of several optical techniques (UV and FT-IR absorption, Raman scattering). UV melting profile of this decamer provides a high melting temperature (60.7°C). A set of Raman spectra recorded at different temperatures allowed us to analyze the order-to-disorder (hairpin-to-random coil) transition. Assignment of vibrational markers led us to confirm the particular nucleoside conformation, and to get information on the base stacking and base pairing in the hairpin structure. Moreover, comparison of the data obtained from two highly stable CUUG and UUCG tetraloops containing the same nucleotides but in a different order permitted an overall discussion of their structural features on the basis of Raman marker evidences.  相似文献   

14.
The contributions of various interactions in the GGCGCAAGCC hairpin containing a GCAA tetraloop were studied by computer simulations using the substitutions of functional groups. The guanosine (G) in the first tetraloop position or in the C-G closing base pair was replaced by 2-aminopurine (AP), and the individual tetraloop's adenosines (A) were replaced by purine (PUR). These substitutions eliminated particular hydrogen bonds thought to stabilize the GCAA tetraloop. For each substitution, molecular dynamics (MD) simulations were carried out in an aqueous solution with sodium counterions, using the CHARMM27 force field. The MD simulations showed that the substitutions in the first (G-->AP) and the third (A-->PUR) position of the GCAA tetraloop did not significantly influence the conformation of the hairpin. A long-lived bridging water molecule observed in the GCAA loop was present in both modified loops. The substitutions made in the last loop position (A-->PUR) or in the C-G base pair closing the tetraloop (G-->AP) to some extent influenced the loop structure and dynamics. These loops did not display the long-lived bridging water molecules. When the second A in the GCAA loop was replaced by PUR, the first A in the loop was observed in the anti or in the syn orientation about the glycosyl bond. The G to AP substitution in C-G base pair led to a change of their arrangement from the Watson-Crick to wobble. The MD simulations of the hairpin with C-AP wobble closing base pair showed increased conformational dynamics of the hairpin. The changes of hairpin formation free energy associated with the substitutions of individual bases were calculated by the free energy perturbation method. Our theoretical estimates suggest a larger destabilization for the G to AP substitutions in GCAA loop than for the substitutions of individual A's by PUR, which is in accordance with experimental tendency. The calculations predicted a similar free energy change for G to AP substitutions in the GCAA tetraloop and in the C-G closing base pair.  相似文献   

15.
Zhao Q  Huang HC  Nagaswamy U  Xia Y  Gao X  Fox GE 《Biopolymers》2012,97(8):617-628
The structures of four small RNAs each containing a different version of the UNAC loop were determined in solution using NMR spectroscopy and restrained molecular dynamics. The UMAC tetraloops (where M is A or C) exhibited a typical GNRA fold including at least one hydrogen bond between the first U and fourth C. In contrast, UGAC and UUAC tetraloops have a different orientation of the first and fourth residues, such that they do not closely mimic the GNRA fold. Although the UMAC tetraloops are excellent structural mimics of the GNRA tetraloop backbone, sequence comparisons typically do not reveal co‐variation between the two loop types. The limited covariation is attributed to differences in the location of potential hydrogen bond donors and acceptors as a result of the replacement of the terminal A of GNRA with C in the UMAC version. Thus, UMAC loops do not readily form the common GNRA tetraloop‐receptor interaction. The loop at positions 863‐866 in E. coli 16S ribosomal RNA appears to be a major exception. However, in this case the GNRA loop does not in fact engage in the usual base to backbone tertiary interactions. In summary, UMAC loops are not just an alternative sequence version of the GNRA loop family, but instead they expand the types of interactions, or lack thereof, that are possible. From a synthetic biology perspective their inclusion in an artificial RNA may allow the establishment of a stable loop structure while minimizing unwanted long range interactions or permitting alternative long‐range interactions. © 2012 Wiley Periodicals, Inc. Biopolymers 97: 617–628, 2012.  相似文献   

16.
Simulations of an RNA hairpin containing a GNRA tetraloop were conducted to allow the characterization of its secondary structure formation and dynamics. Ten 10 ns trajectories of the folded hairpin 5'-GGGC[GCAA]GCCU-3' were generated using stochastic dynamics and the GB/SA implicit solvent model at 300 K. Overall, we find the stem to be a very stable subunit of this molecule, whereas multiple loop conformations and transitions between them were observed. These trajectories strongly suggest that extension of the C6 base away from the loop occurs cooperatively with an N-type-->S-type sugar pucker conversion in that residue and that similar pucker transitions are necessary to stabilize other looped-out bases. In addition, a short-lived conformer with an extended fourth loop residue (A8) lacking this stabilizing 2'-endo pucker mode was observed. Results of thermal perturbation at 400 K support this model of loop dynamics. Unfolding trajectories were produced using this same methodology at temperatures of 500 to 700 K. The observed unfolding events display three-state behavior kinetically (including native, globular, and unfolded populations) and, based on these observations, we propose a folding mechanism that consists of three distinct events: (i) collapse of the random unfolded structure and sampling of the globular state; (ii) passage into the folded region of configurational space as stem base-pairs form and gain helicity; and (iii) attainment of proper loop geometry and organization of loop pairing and stacking interactions. These results are considered in the context of current experimental knowledge of this and similar nucleic acid hairpins.  相似文献   

17.
RNases III are a family of double-stranded RNA (dsRNA) endoribonucleases involved in the processing and decay of a large number of cellular RNAs as well as in RNA interference. The dsRNA substrates of Saccharomyces cerevisiae RNase III (Rnt1p) are capped by tetraloops with the consensus sequence AGNN, which act as the primary docking site for the RNase. We have solved the solution structures of two RNA hairpins capped by AGNN tetraloops, AGAA and AGUU, using NMR spectroscopy. Both tetraloops have the same overall structure, in which the backbone turn occurs on the 3' side of the syn G residue in the loop, with the first A and G in a 5' stack and the last two residues in a 3' stack. A non-bridging phosphate oxygen and the universal G which are essential for Rnt1p binding are strongly exposed. The compared biochemical and structural analysis of various tetraloop sequences defines a novel family of RNA tetraloop fold with the consensus (U/A)GNN and implicates this conserved structure as the primary determinant for specific recognition of Rnt1p substrates.  相似文献   

18.
The partially self-complementary synthetic DNA oligonucleotide d(CG)5T4(CG)5 has been studied by using 1H and 31P NMR and circular dichroism. Results show that, under low-salt conditions (120 mM NaCl buffer), an intramolecular hairpin loop exists in which the double-helical stem region is B-form and the thymidine loop residues have predominantly southern (C2'-endo) sugar conformations. The thymidine glycosidic torsion angles are intermediate between syn and anti or exist as an equilibrium mixture of residues in the two extremes. NOESY data indicate that the structure of the loop region is very similar to that found for d(CG)2T4(CG)2 [Hare, D. R., & Reid, B. R. (1986) Biochemistry 25, 5341-5350]. Under high-salt conditions (6 M NaClO4 buffer), the dominant form (approximately equal to 85%) is an intramolecular hairpin structure in which the stem region forms a Z-form double helix. As in the B-form, the loop thymidine residues are intermediate between the syn and anti conformations or exist as an equilibrium mixture of the two, but the thymidine sugar conformations differ in that they are biased toward northern (C3'-endo) conformations.  相似文献   

19.
Young BT  Silverman SK 《Biochemistry》2002,41(41):12271-12276
Tetraloops with the generic sequence GNRA are commonly found in RNA secondary structure, and interactions of such tetraloops with "receptors" elsewhere in RNA play important roles in RNA structure and folding. However, the contributions of tetraloop-receptor interactions specifically to the kinetics of RNA tertiary folding, rather than the thermodynamics of maintaining tertiary structure once folded, have not been reported. Here we investigate the role of the key GAAA tetraloop-receptor motif in folding of the P4-P6 domain of the Tetrahymena group I intron RNA. Insertions of one or more nucleotides into the tetraloop significantly disrupt the thermodynamics of tertiary folding; single-nucleotide insertions shift the folding free energy by 2-4 kcal/mol (DeltaDeltaG(o)'). The folding kinetics of several modified P4-P6 domains were determined by stopped-flow fluorescence spectroscopy, using an internally incorporated pyrene residue as the chromophore. In contrast to the thermodynamic results, the kinetics of Mg(2+)-induced folding were barely affected by the tetraloop modifications, with a DeltaDeltaG(++) of 0.2-0.4 kcal/mol and a Phi value (ratio of the kinetic and thermodynamic contributions) of <0.1. These data indicate an early transition state for folding of P4-P6 with respect to forming the tetraloop-receptor contact, consistent with previous results for modifications elsewhere in P4-P6. We conclude that the GAAA tetraloop-receptor motif contributes little to the stabilization of the transition state for Mg(2+)-induced P4-P6 folding. Rather, the tetraloop-receptor motif acts to clamp the RNA once folding has occurred. This is the first report to correlate the kinetic and thermodynamic contributions of an important RNA tertiary motif, the GNRA tetraloop-receptor. The results are related to possible models for the Mg(2+)-induced folding of the P4-P6 RNA, including a model invoking rapid nonspecific electrostatic collapse.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号