首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary A survey of the soil microfungi in 5Salix nigra-Populus deltoides forests in southern Wisconsin was conducted. The dilution plate method was employed to obtain 500 isolates per stand. The species present and their frequencies of occurrence were determined. The dominant forms,Trichoderma viride, Cladosporium cladosporioides, Gliocladium roseum, Mucor hiemalis, Coniothyrium sp. 5154,Mortierella minutissima, andPenicillium thomii, accounted for 41 % of the 2,500 isolates but only 4.5 % of the 154 species. They were followed at a second level of prevalence byPenicillium janthinellum P. multicolor, Mortierella alpina, andPhoma sp. 5157. The distribution of these taxa and others in the willow-cottonwood community was found to be correlated with an organic matter gradient. The Dematiaceae and the Sphaerioidaceae characterized populations obtained from the dry pioneer sites; the Mucorales and Moniliaceae became increasingly abundant as the percentage of organic matter increased. The number of fungal propagules ranged from 3,000 to 234,000 per gram of dry soil, the highest numbers occurring in soils with greater organic matter. The willow-cottonwood microfungal population was most similar to one obtained from soils of the closely related southern Wisconsin wet-mesic forests and least similar to ones isolated from the northern Wisconsin bogs and spruce-tamarack swamps.  相似文献   

2.
We investigated microfungal assemblages on leaf litter within a subalpine forest in central Japan and their variation with season, litter depth, and litter species. Microfungal assemblages were compared for Abies needles and Betula leaf litter collected from litter and fermentation layers of the forest floor during the growing season in spring, summer, and autumn. A total of 35 and 42 species were isolated from Abies needles and Betula leaf litter, respectively. The observed variation in microfungal assemblages was primarily attributable to seasonal differences. The frequencies of Trichoderma viride, Volutella ciliata, Mucor sp., and Umbelopsis ramanniana increased in summer, leading to a high degree of similarity of microfungal assemblages in different litter depths and litter species. Microfungal assemblages on Abies needles in spring and autumn and those on Betula leaves in spring were characterized by Trichoderma viride, V. ciliata, Thysanophora penicillioides, Trichoderma polysporum, and (or) Mortierella alpina. Microfungal assemblages on Betula leaves in autumn were characterized by the absence of these species and the occurrence of Cladosporium cladosporioides. The results were discussed with an emphasis on the role of microfungi in decomposition processes and the impact on fungi of predicted future increases in global temperature.  相似文献   

3.
The rhizospheric soil microfungi from a native forest (undisturbed and disturbed) were studied using soil dilution plate and soil washing methods. Fungi were isolated using slightly acid and alkaline culture media. 54 taxa were isolated: 49 from undisturbed forest soil and 37 from disturbed forest soil. Acremonium sp., Aspergillus ustus, Coemansia pectinata, Doratomyces stemonitis, Fusarium solani, F. oxysporum, Gliocladium roseum, Humicola fusco-atra, Mortierella sp., Penicillium lilacinum, Trichoderma harzianum, and T koningii, showed the highest frequency, in both, undisturbed and disturbed forests. In undisturbed soil forest the biodiversity index was 3.97 whereas in disturbed ones was 3.89.  相似文献   

4.
Sierra Nevada forests have high understory species richness yet we do not know which site factors influence herb and shrub distribution or abundance. We examined the understory of an old-growth mixed-conifer Sierran forest and its distribution in relation to microsite conditions. The forest has high species richness (98 species sampled), most of which are herbs with sparse cover and relatively equal abundance. Shrub cover is highly concentrated in discrete patches. Using overstory tree cover and microsite environmental conditions, four habitats were identified; tree cluster, partial canopy, gap, and rock/shallow soil. Herb and shrub species were strongly linked with habitats. Soil moisture, litter depth and diffuse light were the most significant environmental gradients influencing understory plant distribution. Herb cover was most strongly influenced by soil moisture. Shrub cover is associated with more diffuse light, less direct light, and sites with lower soil moisture. Herb richness is most affected by conditions which influence soil moisture. Richness is positively correlated with litter depth, and negatively correlated with direct light and shrub cover. Disturbance or management practices which change forest floor conditions, shallow soil moisture and direct light are likely to have the strongest effect on Sierran understory abundance and richness.  相似文献   

5.
Succession of microfungal assemblages in decomposing peatland plants   总被引:3,自引:0,他引:3  
We investigated the microfungal assemblages in the decomposing tissues of dominant plant species in two peatlands in southern boreal Alberta, Canada, to determine if distinct patterns of succession of microfungi occurred throughout the first two years of decomposition. These plant species were Sphagnum fuscum from a bog and Carex aquatilis leaves and rhizomes and Salix planifolia leaves and roots from a riverine, sedge-dominated fen. Canonical correspondence analyses, a multivariate statistical analysis used infrequently in mycological research, revealed distinct patterns of fungal species succession in two of the five litters (S. fuscum and C. aquatilis leaves). Furthermore, our analyses showed that substantially different microfungal assemblages were associated with these litters within the first two years of decomposition. Litter quality variables, such as total nitrogen, total phosphorus, and total carbon tissue nutrient concentrations, explained most of the succession patterns and differences in the microfungal assemblages of these five litters. Our data did not reveal the classical taxonomic zygomycete – ascomycete/fungi imperfecti – basidiomycete pattern of succession during organic matter decomposition. Similarly, a succession of functional groups of microfungi, i.e., cellulose-degraders preceding lignin-degraders, generally was not apparent. Instead, microfungi with broad spectra of enzymatic abilities co-existed over the first two years of decomposition in these peatland plant litters. These microfungi have a limited ability to decompose complex phenolic polymers, such as lignin, resulting in the accumulation of peat in these ecosystems. Some microfungal taxa were not affected by changes in litter quality, environmental variables, or surface water chemistry and were present at all stages of decomposition.  相似文献   

6.
Kermavnar  Janez  Kutnar  Lado  Marinšek  Aleksander 《Plant Ecology》2022,223(2):229-242

Species- and trait-environment linkages in forest plant communities continue to be a frequent topic in ecological research. We studied the dependence of floristic and functional trait composition on environmental factors, namely local soil properties, overstory characteristics, climatic parameters and other abiotic and biotic variables. The study area comprised 50 monitoring plots across Slovenia, belonging to the EU ICP Forests monitoring network. Vegetation was surveyed in accordance with harmonized protocols, and environmental variables were either measured or estimated during vegetation sampling. Significant predictors of species composition were identified by canonical correspondence analysis. Correlations between plant traits, i.e. plant growth habit, life form, flowering features and CSR signature, were examined with fourth-corner analysis and linear regressions. Our results show that variation in floristic composition was mainly explained by climatic parameters (mean annual temperature, mean annual precipitation), soil properties (pH) and tree layer-dependent light conditions. Trait composition was most closely related with tree layer characteristics, such as shade-casting ability (SCA, a proxy for light availability in the understory layer), tree species richness and tree species composition. Amongst soil properties, total nitrogen content and soil texture (proportion of clay) were most frequently correlated with different species traits or trait states. The CSR signature of herb communities was associated with tree layer SCA, soil pH and mean annual temperature. The floristic composition of the studied herb-layer vegetation depended on temperature and precipitation, which are likely to be influenced by ongoing climate change (warming and drying). Trait composition exhibited significant links to tree layer characteristics and soil conditions, which are in turn directly modified by forest management interventions.

  相似文献   

7.
植物间交互作用在植物群落和生态系统的组成、结构、功能等方面发挥着重要作用.在过去的森林生态系统研究中,更多地关注上层乔木之间的相互作用或乔木层对下层植被的影响,较少研究林下层植被对上层乔木生理生态和生长的影响.本文综述了去除林下层植被对土壤理化性质、土壤动物区系、凋落物分解及上层乔木生理生态和生长的影响,讨论了外界干扰对林下植被-乔木层竞争关系的影响,提出林下植被对上层乔木影响的生理生态学机理概念模型.研究区域、乔木林龄、地力条件、林下植物种类是影响林下层植被-乔木层竞争关系的重要因素.  相似文献   

8.
Qian  X.M.  El-Ashker  A.  Kottke  I.  Oberwinkler  F. 《Plant and Soil》1998,199(1):111-116
Recent tree decline was hypothesized to be connected to root damage caused by soil acidification and increased frequency of pathogenic root colonizing fungi. The rhizoplane is constituted by the mycorrhizal sheath and a high diversity of microfungi, some of which are known to behave antagonistically against pathogens. Disturbance of the balance between pathogens and antagonists by soil acidification may endanger the health of tree roots. Liming may stabilize the interactions. The microfungal populations connected to the mycorrhizoplane of Norway spruce (Picea abies) and beech (Fagus sylvatica) were, therefore, investigated on experimental Norway spruce plots that had been treated with acidified water or were limed. Beech presented the original forest and was left untreated. Eight microfungal species known as either pathogenic or antagonistic, Trichoderma viride, T. hamatum, T. polysporum, Cylindrocarpon destructans, Sesquicillium candelabrum, Mycelium radicis atrovirens, Tolyplocladium geodes and Oidiodendron maius, were isolated from the mycorrhizoplanes and their abundance in the five different plots compared. Acidification enhanced the frequency of Mycelium radicis atrovirens and Oidiodendron maius but reduced Trichoderma viride. Liming promoted Sesquicillium candelabrum and Cylindrocarpon destructans. Detailed analysis of the population patterns indicated that changes in the frequency of a particular fungal species may not only be caused by shift of chemical soil factors but also by antagonistic interactions between the microfungi, thus reducing pathogenic attacks on rootlets.  相似文献   

9.
Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights into the important ecological associations between understory plant community composition and heterogeneity in ecosystem properties and processes within forests dominated by a single canopy species.  相似文献   

10.
Riparian forests are highly valued for maintaining water quality through the retention of sediments and nutrients. They also provide some of the most diverse and species-rich habitats in the world. What is largely unknown, however, is how sediment deposition affects plant community composition in these forests. The objective of this study was to examine changes in plant community composition across a gradient of increasing rates of sedimentation in riparian forests in the southeastern Coastal Plain, USA. Seventeen plots were established within riparian forests receiving between 0 and 5.5 cm year−1 of sediment deposits. Species density and biomass estimates were collected annually from 2002 to 2006 for overstory and mid-story plant species within each plot. Percent cover and nested frequency of understory plant species were determined annually during 2004–2006. Measures of community composition in the understory, mid-story, and overstory layers of forests were compared to changes in environmental factors associated with increased sedimentation. In the understory, annual, exotic, and upland species had higher importance values in plots receiving high sediment deposition. The densities of shade-intolerant and N-fixing species in the mid-story also increased with increasing sedimentation rates. Increased overstory mortality was associated with high sedimentation rates, though increases in understory light levels in these gaps were not the main driver of understory species changes. Edaphic factors, such as soil texture, moisture, and temperature, were significantly correlated to species composition in all three forest layers, suggesting that changes in soil physical structure due to sedimentation may drive community-level changes in these forests.  相似文献   

11.
Question: How are the effects of mineral soil properties on understory plant species richness propagated through a network of processes involving the forest overstory, soil organic matter, soil nitrogen, and understory plant abundance? Location: North‐central Arizona, USA. Methods: We sampled 75 0.05‐ha plots across a broad soil gradient in a Pinus ponderosa (ponderosa pine) forest ecosystem. We evaluated multivariate models of plant species richness using structural equation modeling. Results: Richness was highest at intermediate levels of understory plant cover, suggesting that both colonization success and competitive exclusion can limit richness in this system. We did not detect a reciprocal positive effect of richness on plant cover. Richness was strongly related to soil nitrogen in the model, with evidence for both a direct negative effect and an indirect non‐linear relationship mediated through understory plant cover. Soil organic matter appeared to have a positive influence on understory richness that was independent of soil nitrogen. Richness was lowest where the forest overstory was densest, which can be explained through indirect effects on soil organic matter, soil nitrogen and understory cover. Finally, model results suggest a variety of direct and indirect processes whereby mineral soil properties can influence richness. Conclusions: Understory plant species richness and plant cover in P. ponderosa forests appear to be significantly influenced by soil organic matter and nitrogen, which are, in turn, related to overstory density and composition and mineral soil properties. Thus, soil properties can impose direct and indirect constraints on local species diversity in ponderosa pine forests.  相似文献   

12.
Ecological interactions between aboveground and belowground biodiversity have received many attentions in the recent decades. Although soil biodiversity declined with the decrease of plant diversity, many previous studies found plant species identities were more important than plant diversity in controlling soil biodiversity. This study focused on the responses of soil biodiversity to the altering of plant functional groups, namely overstory and understory vegetations, rather than plant diversity gradient. We conducted an experiment by removing overstory and/or understory vegetation to compare their effects on soil microbial phospholipid fatty acid (PLFA) and nematode diversities in eucalyptus monocultures. Our results indicated that both overstory and understory vegetations could affect soil microbial PLFA and nematode diversities, which manifested as the decrease in Shannon–Wiener diversity index (H′) and Pielou evenness index (J) and the increase in Simpson dominance index (λ) after vegetation removal. Soil microclimate change explained part of variance of soil biodiversity indices. Both overstory and understory vegetations positively correlated with soil microbial PLFA and nematode diversities. In addition, the alteration of soil biodiversity might be due to a mixing effect of bottom-up control and soil microclimate change after vegetation removal in the studied plantations. Given the studied ecosystem is common in humid subtropical and tropical region of the world, our findings might have great potential to extrapolate to large scales and could be conducive to ecosystem management and service.  相似文献   

13.
Abstract

Soil microfungi in homogeneous areas of three plant communities of North Italy.—The soil microfungi associated with three different community types in Prealpine region of North Italy were investigated. Frequency values for the taxonomic entities isolated were calculated, based on occurrence at sampling sites, in each community. Most of the entities were quantitatively rare. The microfungal communities associated with Acer pseudoplatanus and Fraxinus excelsior, with Ostrya carpinifolia and with Fagus sylvatica appeared to be a distinctive group, even if many of them contained a substantial number of species wich are common with other vegetation types.  相似文献   

14.
Göçmen H  Ozkan VK 《Mycopathologia》2002,153(2):103-112
Qualitative and quantitative distributions of microfungal flora of the some greenhouse soils in the vicinity of Lapseki, Canakkale were studied. A total of 25 soil samples were collected from 10 cm depth in five greenhouses. Using soil dilution technique, 128 different microfungal isolates were obtained Isolates collected belonged to Oomycetes (1), Zygomycetes (7), Ascomycetes (9) and 96 belonging to the Deuteromycetes Fifteen isolates were classified as Mycelia Sterilia. The genera of microfungi most abundant in the greenhouse soils were Aspergillus, Penicillium, Geomyces, Exophiala and Fusarium. Qualitative and quantitative distributions of the Aspergillus were higher than those of the other genera. It was found that the maximum value was in greenhouse 5 and the minimum value was in greenhouse 4. The solarization method was the most effective in reducing fungal numbers.  相似文献   

15.
Nonylphenol, the most abundant environmental pollutant with endocrine disrupting activity, is also toxic to plants and microorganisms, but its actual impact in the field is unknown. In this study, diversity of culturable soil microfungal and plant communities was assessed in a disused industrial estate, at three sites featuring different nonylphenol pollution. Although soil microfungal assemblages varied widely among the sites, no significant correlation was found with point pollutant concentrations, thus suggesting indirect effects of soil contamination on microfungal assemblages. The potential of indigenous fungi and plants to remove nonylphenol was assessed in mesocosm experiments. Poplar plants and a fungal consortium consisting of the most abundant strains in the nonylphenol-polluted soil samples were tested alone or in combination for their ability to reduce, under greenhouse conditions, nonylphenol levels either in a sterile, artificially contaminated sand substrate, or in two non-sterile soils from the original industrial area. Introduction of indigenous fungi consistently reduced nonylphenol levels in all substrates, up to ca. 70% depletion, whereas introduction of the plant proved to be effective only with high initial pollutant levels. In native non-sterile soil, nonylphenol depletion following fungal inoculation correlated with biostimulation of indigenous fungi, suggesting positive interactions between introduced and resident fungi. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
The ability of eight soil microfungal species, Alternaria alternata, Clonostachys rosea f. rosea, Exophiala cf. salmonis, Fusarium cf. coeruleum, Fusarium redolens, Paecilomyces lilacinus, Penicillium canescens and Phoma sp., and two known basidiomycete humic acid (HA) degraders, Trametes versicolor and Phanerochaete chrysosporium, to modify fluorescence properties of fulvic acids (FA) and/or HAs was determined. Effects of minerals and/or glucose on the modifications were examined. FA purified on polyvinyl-polypyrrolidone (PVPP) chromatography column was used. Purification of FA on PVPP column removed the low-molar-mass FA-structural components and excess of extractant (NaOH) used during FA preparation. Excitation spectra of FA entering the purification, purified FA and the removal solution indicate that organic compounds rich in carboxylic groups dominate in the removal solution and higher content of phenolic groups is a characteristic of purified FA. Many microfungal species shifted the emission maximum (measured at 470 and 468 nm of excitation wavelength) of FA, and also HA to longer wavelengths. The opposite effect (shift of the HA emission maximum to shorter wavelengths) of microfungi was observed for HA complemented by glucose. Depending on the presence of glucose in the medium, most microfungi changed also the shape of the emission spectra of HA and FA and the excitation spectra of FA. HA excitation spectrum measured at 590 nm of emission wavelength was significantly affected by the presence of glucose. Mineral ions caused a minor shift in the position of excitation maximum (measured at 590 nm of emission wavelength) toward longer wavelengths.  相似文献   

17.
We profiled the microfungal communities in gardens of fungus-growing ants to evaluate possible species-specific ant-microfungal associations and to assess the potential dependencies of microfungal diversity on ant foraging behavior. In a 1-year survey, we isolated microfungi from nests of Cyphomyrmex wheeleri, Trachymyrmex septentrionalis and Atta texana in Central Texas. Microfungal prevalence was higher in gardens of C. wheeleri (57%) than in the gardens of T. septentrionalis (46%) and A. texana (35%). Culture-dependent methods coupled with a polyphasic approach of species identification revealed diverse and changing microfungal communities in all the sampling periods. Diversity analyses showed no obvious correlations between the number of observed microfungal species, ant species, or the ants' changing foraging behavior across the seasons. However, both correspondence analysis and 5.8S-rRNA gene unifrac analyses suggested structuring of microfungal communities by ant host. These host-specific differences may reflect in part the three different environments where ants were collected. Most interestingly, the specialized fungal parasite Escovopsis was not isolated from any attine garden in this study near the northernmost limit of the range of attine ants, contrasting with previous studies that indicated a significant incidence of this parasite in ant gardens from Central and South America. The observed differences of microfungal communities in attine gardens suggest that the ants are continuously in contact with a diverse microfungal species assemblage.  相似文献   

18.
Big sagebrush (Artemisia tridentata Nutt.) plant communities are widespread in western North America and, similar to all shrub steppe ecosystems worldwide, are composed of a shrub overstory layer and a forb and graminoid understory layer. Forbs account for the majority of plant species diversity in big sagebrush plant communities and are important for ecosystem function. Few studies have explored geographic patterns of forb species richness and composition and their relationships with environmental variables in these communities. Our objectives were to examine the fine and broad-scale spatial patterns in forb species richness and composition and the influence of environmental variables. We sampled forb species richness and composition along transects at 15 field sites in Colorado, Idaho, Montana, Nevada, Oregon, Utah, and Wyoming, built species-area relationships to quantify differences in forb species richness at sites, and used Principal Components Analysis, non-metric multidimensional scaling, and redundancy analysis to identify relationships among environmental variables and forb species richness and composition. We found that species richness was most strongly correlated with soil texture, while species composition was most related to climate. The combination of climate and soil texture influences water availability, which our results indicate has important consequences for forb species richness and composition, and suggests that climate change-induced modification of soil water availability may have important implications for plant species diversity in the future.  相似文献   

19.
Elisabeth M. Gross 《Oikos》2003,103(3):497-504
Ectomycorrhizal (ECM) diversity was measured in 12 mixed-wood stands in the Abitibi region of north-western Québec. Stands were of similar age and were situated on similar mineral soil deposits, but supported varying proportions of ECM host trees. Host roots were sampled in a manner that enabled their separation into species on the basis of wood anatomy. Shannon diversity indices for the ECM colonizing each host species were determined on the basis of ECM anatomy. The diversity of overstory trees, understory plants and host roots, as well as overstory tree composition, root density and pertinent abiotic factors were measured and used as independent variables in multiple regressions against ECM diversity. We found a positive relationship between overstory tree diversity and ECM diversity, which appears related to fungal host specificity. Although no direct relationship was seen between ECM diversity and soil factors, levels of exchangeable base cations were related to ECM fungal species composition which correlated with ECM diversity at the scale sampled.  相似文献   

20.
On a regional scale, we compared the local adaptive patterns of soil mycobiota revealed in four 'Evolution Canyons' located in the northern and southern parts of Israel. These microsites were chosen according to the framework of the Institute of Evolution, University of Haifa programme, focusing on the effect of interslope environmental divergence on biodiversity patterns. The comparative analysis demonstrated remarkable differences in spatiotemporal structure of the microfungal communities and their biodiversity level (species richness, heterogeneity and equitability). In the desert 'Evolution Canyon', stress-selected, slow-reproducing, dark-coloured species with large, multicelled conidia were dominant. At the same time, in the forest localities of the northern canyons, as well as in the agriculturally disturbed locality with soil degradation, ruderal-selected, fast-reproducing Penicillium species predominated. Environmental natural selection appeared to be the major factor affecting adaptive diversity patterns of soil microfungi in the studied area.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 157–163.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号