首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Down syndrome (DS), trisomy of human chromosome 21, is the most common genetic cause of intellectual disability. With an incidence in some countries as high as one in approximately 700 live births, and a complex, extensive and variably severe phenotype, Down syndrome is a significant medical and social challenge. In recent years, there has been a rapid increase in information on the functions of the genes of human chromosome 21, as well as in techniques and resources for their analysis. A recent workshop brought together experts on the molecular biology of Down syndrome and chromosome 21 with interested researchers in other fields to discuss advances and potentials for generating gene-phenotype correlations. An additional goal of the workshop was to work towards identification of targets for therapeutics that will correct features of DS. A knowledge-based approach to therapeutics also requires the correlation of chromosome 21 gene function with phenotypic features.  相似文献   

2.
L Stubbs  J Kraus  H Lehrach 《Genomics》1990,7(2):284-288
Murine genes homologous to those contributing to the Down syndrome (DS) phenotype in man are currently of interest because of their potential for providing animal models for the study of specific DS symptoms. Most of the genes mapping to human chromosome 21q22, where the DS genes are concentrated, are related to sequences located on mouse chromosome 16. Others, however, are known to map to mouse chromosome 10, and two genes, cystathionine beta-synthase (Cbs) and alpha-A-crystallin (Crya-1), have been localized to the proximal portion of mouse chromosome 17. In this paper, we show that the two genes mapping to human chromosome 21q22 and mouse chromosome 17 are very tightly linked in mouse, being separated by at least 70 kb, but not more than 130 kb. The very close physical linkage of mouse Cbs and Crya-1, combined with data that localize homologs of the closely flanking markers H2k and Pim-1 to human chromosome 6, suggests that the human 21q22/mouse chromosome 17 conserved segment is of a very limited total physical size and is likely to contain a relatively small number of genes.  相似文献   

3.
4.
Summary.  Down syndrome (DS) is the most frequent genetic disorder with mental retardation and caused by trisomy 21. Although the gene dosage effect hypothesis has been proposed to explain the impact of extra chromosome 21 on the pathology of DS, a series of evidence that challenge this hypothesis has been reported. The availability of the complete sequences of genes on chromosome 21 serves now as starting point to find functional information of the gene products, but information on gene products is limited so far. We therefore evaluated expression levels of six proteins whose genes are encoded on chromosome 21 (synaptojanin-1, chromosome 21 open reading frame 2, oligomycin sensitivity confering protein, peptide 19, cystatin B and adenosine deaminase RNA-specific 2) in fetal cerebral cortex from DS and controls at 18–19 weeks of gestational age using Western blot analysis. Synaptojanin-1 and C21orf2 were increased in DS, but others were comparable between DS and controls, suggesting that the DS phenotype cannot be simply explained by gene dosage effects. We are systematically quantifying all proteins whose genes are encoded on chromosome 21 in order to provide a better understanding of the pathobiochemistry of DS at the protein level. These studies are of significance as they show for the first time protein levels that are carrying out specific function in human fetal brain with DS. Received August 12, 2002 Accepted September 12, 2002 Published online January 30, 2003 Authors' address: Prof. Dr. Gert Lubec, CChem, FRSC (UK) Department of Pediatrics, University of Vienna, Waehringer Guertel 18, A-1090 Vienna, Austria, Fax: +43-1-40400-3194, E-mail: gert.lubec@akh-wien.ac.at Abbreviations: ADAR2, adenosine deaminase RNA-specific 2; C21orf2, chromosome 21 open reading frame 2; DS, Down syndrome; NSE, neuron specific enolase; OSCP, oligomycin sensitivity conferring protein; PEP-19, peptide 19  相似文献   

5.
The molecular mechanisms underlying the specific traits in individuals with Down syndrome (DS) have been postulated to derive either from nonspecific perturbation of balanced genetic programs, or from the simple, mendelian-like influence of a small subset of genes on chromosome 21. However, these models do not provide a comprehensive explanation for experimental or clinical observations of the effects of trisomy 21. DS is best viewed as a complex genetic disorder, where the specific phenotypic manifestations in a given individual are products of genetic, environmental and stochastic influences. Mouse models that recapitulate both the genetic basis for and the phenotypic consequences of trisomy provide an experimental system to define these contributions.  相似文献   

6.
7.
8.

Background  

Down syndrome (DS), caused by trisomy of human chromosome 21 (HSA21), is the most common genetic birth defect. Congenital heart defects (CHD) are seen in 40% of DS children, and >50% of all atrioventricular canal defects in infancy are caused by trisomy 21, but the causative genes remain unknown.  相似文献   

9.
孟晓伟  汪洁  马晴雯 《遗传》2018,40(3):207-217
唐氏综合征(Down syndrome, DS)是最常见的常染色体异常疾病,由人类21号染色体(human chromosome 21, Hsa21)的重复引起。由于Hsa21的直系同源基因分散于小鼠16、17和10号染色体上,所以用小鼠模拟人类唐氏综合征并不容易。早期的Ts65Dn小鼠虽然具有DS表型特征,但其重复片段由电离辐射产生,未包含所有Hsa21直系同源基因。2004年,Cre/LoxP重组酶系统介导的染色体编辑技术在Ts1Rhr小鼠中的成功应用,解决了特定片段重复化的难题,使DS小鼠模型在基因重复和表型模拟方面实现了精准化。本文从同源基因重复和DS表型模拟两方面简要介绍了不同时期DS小鼠模型的优势和局限,为科研人员在DS研究中对不同小鼠模型的选用提供了参考。  相似文献   

10.
Down syndrome (DS) is the most common human chromosomal abnormality caused by an extra copy of chromosome 21 and characterized by somatic anomalies and mental retardation. The phenotype of DS is thought to result from overexpression of genes encoded on chromosome 21. Although several studies reported mRNA levels of genes localized on chromosome 21, mRNA data cannot be simply extrapolated to protein levels. Furthermore, most protein data have been generated using immunochemical methods. In this study we investigated expression of three proteins (cystathionine beta-synthase (CBS), pyridoxal kinase (PDXK), ES1 protein homolog, mitochondrial precursor (ES1)) whose genes are encoded on chromosome 21 in fetal DS (n = 8; mean gestational age of 19.8 +/- 2.0 weeks) and controls (n = 7; mean gestational age of 18.8 +/- 2.2 weeks) brains (cortex) using proteomic technologies. Two-dimensional electrophoresis (2-DE) with subsequent in-gel digestion of spots and matrix-assisted laser desorption ionization (MALDI) spectroscopic identification followed by quantification of spots with specific software was applied. Subsequent quantitative analysis of CBS and PDXK revealed levels comparable between DS and controls. By contrast, ES1 was two-fold elevated (P < 0.01) in fetal DS brain. This protein shows significant homology with the E. coli SCRP-27A/ELBB and zebrafish ES1 protein and contains a potential targeting sequence to mitochondria in its N-terminal region. Based on the assumption that structural similarities reflect functional relationship, it may be speculated that ES1 is serving a basic function in mitochondria. Although no function of the human ES1 protein is known yet, ES1 may be a candidate protein involved in the pathogenesis of the brain deficit in DS.  相似文献   

11.
Z Cetin  S Yakut  E Mihci  AE Manguoglu  S Berker  I Keser  G Luleci 《Gene》2012,507(2):159-164
Pure partial trisomy of chromosome 21 is a rare event. The patients with this aberration are very important for setting up precise karyotype-phenotype correlations particularly in Down syndrome phenotype. We present here a patient with Down syndrome with a de novo derivative chromosome 21. Karyotype of the patient was designated as 46,XY,der(21)(p13)dup(21)(q11.2q21.3)dup(21)(q22.2q22.3) with regard to cytogenetic, FISH and array-CGH analyses. Non-continuous monosomic, disomic and trisomic chromosomal segments through the derivative chromosome 21 were detected by array-CGH analysis. STR analyses revealed maternal origin of the de novo derivative chromosome 21. The dual-specificity tyrosine (Y)-phosphorylation regulated kinase 1A (DYRK1A) and Down Syndrome Critical Region 1 (DSCR1) genes that are located in Down syndrome critical region, are supposed to be responsible for most of the clinical findings of Down syndrome. However, our patient is the first patient with Down syndrome whose clinical findings were provided in detail, with a de novo derivative chromosome 21 resulting from multiple chromosome breaks excluding DYRK1A and DSCR1 gene regions.  相似文献   

12.
Cheon MS  Shim KS  Kim SH  Hara A  Lubec G 《Amino acids》2003,25(1):41-47
Summary.  Down syndrome (DS) is the most frequent genetic disorder with mental retardation and caused by trisomy 21. Although the molecular mechanisms of the various phenotypes of DS could be due to overexpression of gene(s) on chromosome 21, several groups have challenged this gene dosage effect hypothesis. The near completion of the sequencing of human chromosome 21 provides unprecedented opportunities to understand the molecular pathology of DS, however, functional information on gene products is limited so far. We therefore evaluated the levels of six proteins whose genes are encoded on chromosome 21 (trefoil factor 1, trefoil factor 2, trefoil factor 3, coxsackie virus and adenovirus receptor, carbonyl reductase 1 and interferon-α receptor) in fetal cerebral cortex from DS and controls at the early second trimester using Western blot analysis. None of the investigated proteins showed overexpression in DS compared to controls suggesting that these proteins are not involved in abnormal development of fetal DS brain and that DS phenotype can not be simply explained by the gene dosage effect hypothesis. We are systematically quantifying all proteins whose genes are encoded on chromosome 21 and these studies may provide a better understanding of genotype-phenotype correlation in DS. Received November 28, 2002 Accepted March 10, 2003 Acknowledgements's of Hospital of Philadelphia, PA, (USA) and Biogen, Inc. (anti-IFNAR-1 antibody; Cambridge, USA) for kindly providing the antibodies and comments. Authors' address: Prof. Dr. Gert Lubec, CChem, FRSC (UK), Department of Pediatrics, University of Vienna, Waehringer Guertel 18, A-1090 Vienna, Austria, Fax: +43-1-40400-3194, E-mail: gert.lubec@akh-wien.ac.at Abbreviations: AD, Alzheimer's disease; CAR, coxsackievirus and adenovirus receptor; CBR1, carbonyl reductase 1; CNS, central nervous system; DS, Down syndrome; IFNs, interferons; IFNAR-1, interferon-α receptor; NSE, neuron specific enolase; TFF, trefoil factor  相似文献   

13.
A new mouse model of Down syndrome (DS) carries a copy of human chromosome 21 (Hsa21), in addition to a full complement of mouse chromosomes. In terms of the number of trisomic genes represented, this model, known as 'Tc1', is closer to the genetic background of DS than any previous model. The Tc1 model not only recapitulates several of the DS features present in other mouse models but also exhibits heart defects that are similar to those that make trisomy 21 the leading cause of congenital heart disease in humans. Many cells in adult Tc1 mice show mosaicism - that is, the Hsa21 is lost from some cells during development - increasing the complexity of analyses using this model. Tc1 mice provide a powerful tool for investigation of the pathogenesis of trisomy 21, and a platform for analysis of similarities and differences in the evolution of gene regulation.  相似文献   

14.
Down syndrome (DS) is the most frequent form of mental retardation and is caused by chromosome 21 (HSA21) trisomy. Despite the number of known genes involved in DS and its high therapeutic interest, biological mechanisms leading to the DS phenotype are not fully clear. We present a functional hypothesis based on fold recognition and hidden Markov model techniques for four HSA21 genes located in the DS Candidate Region (DSCR). More specifically, we propose that they are members of a novel mitogen-activated protein kinase pathway with DYRK1A, SNF1LK and RIPK4 gene products being elements of the kinase cascade and the DSCR3 acting as structural scaffold for their interaction. This hypothesis finds support in various biochemical studies concerning the biological behavior and features of the involved HSA21 proteins. Our analysis calls for specifically designed experiments to validate our prediction and establish its relevance in terms of therapeutic approaches to the disease. CONTACT: anna.tramontano@uniroma1.it SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

15.
16.
Gene expression profiling in the adult Down syndrome brain   总被引:4,自引:0,他引:4  
  相似文献   

17.
Even though the molecular mechanisms underlying the Down syndrome (DS) phenotypes remain obscure, the characterization of the genes and conserved non-genic sequences of HSA21 together with large-scale gene expression studies in DS tissues are enhancing our understanding of this complex disorder. Also, mouse models of DS provide invaluable tools to correlate genes or chromosome segments to specific phenotypes. Here we discuss the possible contribution of HSA21 genes to DS and data from global gene expression studies of trisomic samples.  相似文献   

18.
The human gene for cystathionine beta-synthase (CBS), the enzyme deficient in classical homocystinuria, has been assigned to the subtelomeric region of band 21q22.3 by in situ hybridization of a rat cDNA probe to structurally rearranged chromosomes 21. The homologous locus in the mouse (Cbs) was mapped to the proximal half of mouse chromosome 17 by Southern analysis of Chinese hamster X mouse somatic cell hybrid DNA. Thus, CBS/Cbs and the gene for alpha A-crystalline (CRYA1/Crya-1 or Acry-1) form a conserved linkage group on human (HSA) chromosome region 21q22.3 and mouse (MMU) chromosome 17 region A-C. Features of Down syndrome (DS) caused by three copies of these genes should not be present in mice trisomic for MMU 16 that have been proposed as animal models for DS. Mice partially trisomic for MMU 16 or MMU 17 should allow gene-specific dissection of the trisomy 21 phenotype.  相似文献   

19.
Distal mouse chromosome 16 (MMU16) shares conserved linkage with human chromosome 21 (HSA21), trisomy for which causes Down syndrome (DS). A 4.5-Mb physical map extending from Cbr1 to Tmprss2 on MMU16 provides a minimal tiling path of P1 artificial chromosomes (PACs) for comparative mapping and genomic sequencing. Thirty-four expressed sequences were positioned on the mouse map, including 19 that were not physically mapped previously. This region of the mouse:human comparative map shows a high degree of evolutionary conservation of gene order and content, which differs only by insertion of one gene (in mouse) and a small inversion involving two adjacent genes. "Low-pass" (2.2x) mouse sequence from a portion of the contig was ordered and oriented along 510 kb of finished HSA21 sequence. In combination with 68 kb of unique PAC end sequence, the comparison provided confirmation of genes predicted by comparative mapping, indicated gene predictions that are likely to be incorrect, and identified three candidate genes in mouse and human that were not observed in the initial HSA21 sequence annotation. This comparative map and sequence derived from it are powerful tools for identifying genes and regulatory regions, information that will in turn provide insights into the genetic mechanisms by which trisomy 21 results in DS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号