首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R J Miller 《FASEB journal》1990,4(15):3291-3299
Ca2+ influx into the nerve terminal is normally the trigger for the release of neurotransmitters. Many neurons possess presynaptic receptors whose activation results in changes in the quantity of neurotransmitter released by an action potential. This paper reviews studies that show that presynaptic receptors can regulate the activity of Ca2+ channels in the nerve terminal, resulting in changes in the influx of Ca2+ and in neurotransmitter release. Neurons possess several different types of voltage-sensitive Ca2+ channels. Ca2+ influx through N-type channels appears to trigger transmitter release in many instances. In other cases Ca2+ influx through L channels can influence transmitter release. Neurotransmitters can inhibit N channels through a G protein-mediated transduction mechanism. The G proteins are frequently pertussis toxin substrates. Inhibition of N channels appears to involve changes in their voltage dependence. Neurotransmitters can also regulate neuronal K+ channels. Activation of these K+ channels can lead to a reduction in Ca2+ influx and neurotransmitter release; these effects are also mediated by G proteins. Thus neurotransmitters may often regulate both presynaptic Ca2+ and K+ channels. These two effects may be synergistic mechanisms for the regulation of Ca2+ influx and neurotransmitter release.  相似文献   

2.
《遗传学报》2022,49(8):726-734
Eukaryotic cells are confined by membranes that create hydrophobic barriers for substance and information exchange between the inside and outside of the cell. These barriers are formed by assembly of lipids and protein in aqueous environments. Lipids not only serve as building blocks for membrane construction, but also possess regulatory functions in cellular activities. These regulatory lipids are non-uniformly distributed in membrane systems; their temporal and spatial accumulation in specific membranes decodes environmental cues and changes cellular activity accordingly. Phosphoinositides (PIs) are phospholipids that exert regulatory effects. In recent years, research on PIs roles in regulating plant growth, development, and responses to environmental stress is increasing. Several reviews have been published on the composition of PIs, intermolecular transferring of PIs by lipid kinases (phosphatases) or PI-PLCs, subcellular localization, and specially their functions in plant developments. Herein, we review the crucial regulatory functions of PIs in plant stress responses, with a particular focus on PIs involved in membrane trafficking.  相似文献   

3.
Phosphoinositides are the phosphorylated derivatives of phosphatidylinositol, and play a very significant role in a diverse range of signaling processes in eukaryotic cells. A number of phosphoinositide-metabolizing enzymes, including phosphoinositide-kinases and phosphatases are involved in the synthesis and degradation of these phospholipids. Recently, the function of various phosphatases in the phosphatidylinositol signaling pathway has been of great interest. In the present review we summarize the structural insights and biochemistry of various phosphatases in regulating phosphoinositide metabolism. [BMB Reports 2013; 46(1): 1-8]  相似文献   

4.
Phosphoinositide signaling disorders in human diseases   总被引:12,自引:0,他引:12  
Phosphoinositides (PIs) play an essential role in diverse cellular functions. Their intracellular level is strictly regulated by specific PI kinases, phosphatases and phospholipases. Recent discoveries indicate that dysfunctions in the control of their level often lead to pathologies. This review will focus on some human diseases whose etiologies involve PI-metabolizing enzymes. The role of PTEN (phosphatase and tensin homolog deleted on chromosome ten) in cancer, the impact of the Src homology 2-containing inositol-5-phosphatase phosphatases in acute myeloid leukemia or diabetes, the involvement of myotubularin family members in genetic diseases and the implication of OCRL1 in Lowe syndrome will be emphasized. We will also review how some bacterial pathogens have evolved strategies to specifically manipulate the host cell PI metabolism to efficiently infect them.  相似文献   

5.
Neurotransmitter release is regulated by SNARE complex-mediated synaptic vesicle fusion. Tomosyn sequesters target SNAREs (t-SNAREs) through its C-terminal VAMP-like domain (VLD). Cumulative biochemical results suggest that the tomosyn-SNARE complex is so tight that VAMP2 cannot displace tomosyn. Based on these results, the tomosyn-SNARE complex has been believed to be a dead-end complex to inhibit neurotransmitter release. On the other hand, some studies using siRNA depletion of tomosyn suggest that tomosyn positively regulates exocytosis. Therefore, it is still controversial whether tomosyn is a simple inhibitor for neurotransmitter release. We recently reported that the inhibitory activity of tomosyn is regulated by the tail domain binding to the VLD. In this study, we employed the liposome fusion assay in order to further understand modes of action of tomosyn in detail. The tail domain unexpectedly had no effect on binding of the VLD to t-SNARE-bearing liposomes. Nonetheless, the tail domain decreased the inhibitory activity of the VLD on the SNARE complex-mediated liposome fusion. These results indicate that the tail domain controls membrane fusion through tomosyn displacement by VAMP2. Deletion of the tail domain-binding region in the VLD retained the binding to t-SNAREs and promoted the liposome fusion. Together, we propose here a novel mechanism of tomosyn that controls synaptic vesicle fusion positively by serving as a placeholder for VAMP2.  相似文献   

6.
Neurotransmitter release is triggered by Ca(2+) binding to a low affinity Ca(2+) sensor, mostly synaptotagmin-1, which catalyzes SNARE-mediated synaptic vesicle fusion. Tomosyn negatively regulates Ca(2+)-dependent neurotransmitter release by sequestering target SNAREs through the C-terminal VAMP-like domain. In addition to the C terminus, the N-terminal WD40 repeats of tomosyn also have potent inhibitory activity toward Ca(2+)-dependent neurotransmitter release, although the molecular mechanism underlying this effect remains elusive. Here, we show that through its N-terminal WD40 repeats tomosyn directly binds to synaptotagmin-1 in a Ca(2+)-dependent manner. The N-terminal WD40 repeats impaired the activities of synaptotagmin-1 to promote SNARE complex-mediated membrane fusion and to bend the lipid bilayers. Decreased acetylcholine release from N-terminal WD40 repeat-microinjected superior cervical ganglion neurons was relieved by microinjection of the cytoplasmic domain of synaptotagmin-1. These results indicate that, upon direct binding, the N-terminal WD40 repeats negatively regulate the synaptotagmin-1-mediated step of Ca(2+)-dependent neurotransmitter release. Furthermore, we show that synaptotagmin-1 binding enhances the target SNARE-sequestering activity of tomosyn. These results suggest that the interplay between tomosyn and synaptotagmin-1 underlies inhibitory control of Ca(2+)-dependent neurotransmitter release.  相似文献   

7.
神经元突触前可塑性的结构及分子基础   总被引:1,自引:0,他引:1  
突触可塑性是神经元间信息传递的重要生理调控机制,它包括突触前可塑性和突触后可塑性.突触前可塑性是指通过对神经递质释放过程的干预、修饰,调节突触强度的过程.突触强度的变化,是通过影响量子的大小,活动区的个数和囊泡释放概率来实现的.而突触前囊泡活动尤为重要:从转运、搭靠、融合至内吞进入下一轮循环,每一步都是由一群互相作用的蛋白质共同完成的.  相似文献   

8.
《The Journal of cell biology》1994,125(5):1015-1024
Cellubrevin is a member of the synaptobrevin/VAMP family of SNAREs, which has a broad tissue distribution. In fibroblastic cells it is concentrated in the vesicles which recycle transferrin receptors but its role in membrane trafficking and fusion remains to be demonstrated. Cellubrevin, like the synaptic vesicle proteins synaptobrevins I and II, can be cleaved by tetanus toxin, a metallo-endoprotease which blocks neurotransmitter release. However, nonneuronal cells are unaffected by the toxin due to lack of cell surface receptors for its heavy chain. To determine whether cellubrevin cleavage impairs exocytosis of recycling vesicles, we tested the effect of tetanus toxin light chain on the release of preinternalized transferrin from streptolysin-O-perforated CHO cells. The release was found to be temperature and ATP dependent as well as NEM sensitive. Addition of tetanus toxin light chain, but not of a proteolytically inactive form of the toxin, resulted in a partial inhibition of transferrin release which correlated with the toxin-mediated cleavage of cellubrevin. The residual release of transferrin occurring after complete cellubrevin degradation was still ATP dependent. Our results indicate that cellubrevin plays an important role in the constitutive exocytosis of vesicles which recycle plasmalemma receptors. The incomplete inhibition of transferrin release produced by the toxin suggests the existence of a cellubrevin-independent exocytotic mechanism, which may involve tetanus toxin-insensitive proteins of the synaptobrevin/VAMP family.  相似文献   

9.
Experiments with slices of the rat cortex were made to study the interaction between the ability of the antidepressants to inhibit the reverse uptake of 14C-noradrenaline and to inhibit its presynaptic release. The antidepressants studied are distributed into 3 groups according to the ratio of effective concentrations that block the uptake and enhance the release of 14C-noradrenaline from the slices. The first group includes the antidepressants (melipramine, chlorimipramine, Lu 5-003, Lu 3-010, S-394, pyrazidol) that have a ratio close to I and in whose mechanism of aminopotentiating action the main component is unlikely to be distinguished. The second group with a ratio less than I is represented by the substances (nortryptyline, desipramine) whose mechanism of the aminopotentiating action is determined by the inhibitory effect on the neurotransmitter reverse uptake. As to the 3d group antidepressants (thyroliberin, iprindol, noveril, C-356, C-395, amitryptyline), of great importance is their effect on the presynaptic neurotransmitter release from the terminals of the axons of noradrenergic neurons.  相似文献   

10.
Abstract: Tetanus toxin (TeNT) is one of the clostridial neurotoxins that act intracellularly to block neurotransmitter release. However, neither the route of entry nor the mechanism by which these toxins gain access to the neuronal cytoplasm has been established definitively. In murine spinal cord cell cultures, release of the neurotransmitter glycine is particularly sensitive to blockade by TeNT. To test whether TeNT enters neurons through acidic endosomes or is routed through the Golgi apparatus, toxin action on potassium-evoked glycine release was assayed in cultures pretreated with bafilomycin A1 (baf A1) or brefeldin A (BFA). baf A1, which inhibits the vacuolar-type H+-ATPase responsible for endosome acidification, diminishes the staining of acidic compartments and interferes with the action of TeNT in a dose-dependent manner. TeNT blockade of evoked glycine release is inhibited by 50 and 90% in cultures pretreated with 50 and 100 n M baf A1, respectively, compared with cultures treated with the inhibitor alone. The effects of baf A1 are fully reversible. In contrast, BFA, which disrupts Golgi function, has no effect on TeNT action. These findings provide evidence that TeNT enters the neuronal cytoplasm through baf A1-sensitive acidic compartments and that TeNT is not trafficked through the Golgi apparatus before its translocation into the neuronal cytosol.  相似文献   

11.
Krauss M  Haucke V 《FEBS letters》2007,581(11):2105-2111
Phosphoinositides serve as important spatio-temporal regulators of intracellular trafficking and cell signalling events. In addition to their recognition by specific phosphoinositide binding domains present within cytoplasmic adaptor proteins or membrane integral channels and transporters phosphoinositides may affect membrane transport by eliciting conformational changes within proteins or by regulating enzymatic activities. During adaptor-mediated membrane traffic phosphoinositides form part of coincidence detection systems that aid in targeting pools of specific phosphoinositides to select intracellular transport pathways. In this review, we discuss potential mechanisms for conferring selectivity onto the phosphoinositide code as well as possible avenues for future research.  相似文献   

12.
The Rho GTPase activating protein Rgd1 increases the GTPase activity of Rho3p and Rho4p, which are involved in bud growth and cytokinesis, respectively, in the budding yeast Saccharomyces cerevisiae. Rgd1p is a member of the F-BAR family conserved in eukaryotes; indeed, in addition to the C-terminal RhoGAP domain Rgd1p possesses an F-BAR domain at its N-terminus. Phosphoinositides discriminate between the GTPase activities of Rho3p and Rho4p through Rgd1p and specifically stimulate the RhoGAP activity of Rgd1p on Rho4p. Determining specific interactions and resolving the structure of Rgd1p should provide insight into the functioning of this family of protein. We report the preparation of highly pure and functional RhoGAP domain of Rgd1 RhoGAP domain using a high yield expression procedure. By gel filtration and circular dichroïsm we provide the first evidences for a specific interaction between a RhoGAP domain (the RhoGAP domain of Rgd1p) and phosphoinositides.  相似文献   

13.
Tibor Rohacs   《Cell calcium》2009,45(6):554-565
Transient receptor potential (TRP) channels are involved in a wide range of physiological processes, and characterized by diverse activation mechanisms. Phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate [PIP2, or PtdIns(4,5)P2] recently emerged as regulators of many TRP channels. Several TRP channels require PIP2 for activity, and depletion of the lipid inhibits them. For some TRP channels, however, phosphoinositide regulation seems more complex, both activating and inhibitory effects have been reported. This review will discuss phosphoinositide regulation of members of the TRPM (Melastatin), TRPV (Vanilloid), TRPA (Ankyrin) and TRPP (Polycystin) families. Lipid regulation of TRPC (Canonical) channels is discussed elsewhere in this volume.  相似文献   

14.
Müller M  Pym EC  Tong A  Davis GW 《Neuron》2011,69(4):749-762
Homeostatic signaling systems stabilize neural function through the modulation of neurotransmitter receptor abundance, ion channel density, and presynaptic neurotransmitter release. Molecular mechanisms that drive these changes are being unveiled. In theory, molecular mechanisms may also exist to oppose the induction or expression of homeostatic plasticity, but these mechanisms have yet to be explored. In an ongoing electrophysiology-based genetic screen, we have tested 162 new mutations for genes involved in homeostatic signaling at the Drosophila NMJ. This screen identified a mutation in the rab3-GAP gene. We show that Rab3-GAP is necessary for the induction and expression of synaptic homeostasis. We then provide evidence that Rab3-GAP relieves an opposing influence on homeostasis that is catalyzed by Rab3 and which is independent of any change in NMJ anatomy. These data define roles for Rab3-GAP and Rab3 in synaptic homeostasis and uncover a mechanism, acting at a late stage of vesicle release, that opposes the progression of homeostatic plasticity.  相似文献   

15.
Interleukin-1 is a primary mediator of immune responses to injury and infection, but the mechanism of its cellular release is unknown. IL-1 exists as two agonist forms (IL-1 alpha and IL-1 beta) present in the cytosol of activated monocytes/macrophages. IL-1 beta is synthesized as an inactive precursor that lacks a signal sequence, and its trafficking does not use the classical endoplasmic reticulum-Golgi route of secretion. Using primary cultured murine peritoneal macrophages, we demonstrate that P2X7 receptor activation causes release of IL-1 beta and IL-1 alpha via a common pathway, dependent upon the release of Ca(2+) from endoplasmic reticulum stores and caspase-1 activity. Increases in intracellular Ca(2+) alone do not promote IL-1 secretion because a concomitant efflux of K(+) through the plasmalemma is required. In addition, we demonstrate the existence of an alternative pathway for the secretion of IL-1 alpha, independent of P2X7 receptor activation, but dependent upon Ca(2+) influx. The identification of these mechanisms provides insight into the mechanism of IL-1 secretion, and may lead to the identification of targets for the therapeutic modulation of IL-1 action in inflammation.  相似文献   

16.
Neurons communicate with other neurons via specialized structures called synapses, at which the digital voltage signal encoded in an action potential is converted into an analog chemical signal. An action potential that arrives at the presynaptic face triggers release of neurotransmitter from vesicles in a calcium-dependent manner, and the neurotransmitter diffuses across the synaptic cleft and binds to receptors on the post-synaptic face, where it may trigger a postsynaptic action potential. Calcium is a critical component of the release process, and its spatio-temporal dynamics can control the release and can lead to facilitation or augmentation. However, how cells regulate cytoplasmic calcium so that exocytosis can be triggered successfully is still not completely understood. We propose a mechanism, based upon the experimental findings of Barrett and Rittenhouse [C.F. Barrett, A.R. Rittenhouse, Modulation of N-type calcium channel activity by G-proteins and protein kinase C, J. Gen. Physiol. 115 (3) (2000) 277], for the regulation of calcium influx through N-type channels in the presynaptic terminal by PKC and downstream effectors of G-protein activation. This proposed modulatory mechanism consists of a feedback loop involving cytoplasmic calcium, neurotransmitters and G-protein-coupled receptors. We study the dynamics of each component separately and then we address how kinetic properties of the components and the frequency of the stimuli affect the regulatory mechanisms presented here.  相似文献   

17.
Voltage-gated calcium channels couple changes in membrane potential to neuronal functions regulated by calcium, including neurotransmitter release. Here we report that presynaptic N-type calcium channels not only control neurotransmitter release but also regulate synaptic growth at Drosophila neuromuscular junctions. In a screen for behavioral mutants that disrupt synaptic transmission, an allele of the N-type calcium channel locus (Dmca1A) was identified that caused synaptic undergrowth. The underlying molecular defect was identified as a neutralization of a charged residue in the third S4 voltage sensor. RNA interference reduction of N-type calcium channel expression also reduced synaptic growth. Hypomorphic mutations in syntaxin-1A or n-synaptobrevin, which also disrupt neurotransmitter release, did not affect synapse proliferation at the neuromuscular junction, suggesting calcium entry through presynaptic N-type calcium channels, not neurotransmitter release per se, is important for synaptic growth. The reduced synapse proliferation in Dmca1A mutants is not due to increased synapse retraction but instead reflects a role for calcium influx in synaptic growth mechanisms. These results suggest N-type channels participate in synaptic growth through signaling pathways that are distinct from those that mediate neurotransmitter release. Linking presynaptic voltage-gated calcium entry to downstream calcium-sensitive synaptic growth regulators provides an efficient activity-dependent mechanism for modifying synaptic strength.  相似文献   

18.
Calcium is a major second messenger in neurons and modulates many neuronal functions, including protein phosphorylation, phospholipid metabolism, cytoskeletal activity, and neurotransmitter release. These important events, which regulate neuronal activity, are directly dependent on the influx of extracellular calcium through voltage-sensitive calcium channels (VSCCs) in the neuronal membrane. Modulation of VSCC function represents an important strategy for regulating neuronal excitability. Although substantial evidence supports the ability of dihydropyridines to block VSCCs and contractility in cardiovascular tissue, their ability to block the majority of neuronal VSCCs remains controversial. Benzodiazepines, and other anticonvulsants, block depolarization-dependent 45Ca uptake through VSCCs in brain synaptosome preparations. In addition, benzodiazepines reduce voltage-gated calcium conductance as determined by voltage clamp studies of identified invertebrate neurons. Inhibition of VSCC activity may be an important mechanism by which these compounds produce their anticonvulsant and sedative effects. Intrasomal injection of calcium-calmodulin-dependent protein kinase modulates calcium conductance in invertebrate neurons, suggesting that protein phosphorylation may be an endogenous regulatory mechanism of VSCC activity. Developing novel pharmacological approaches to regulating VSCCs and understanding the endogenous regulatory mechanisms may lead to new therapeutic approaches to the treatment of neurological diseases.  相似文献   

19.
We have examined the regulation of the orexigenic neurotransmitter, NPY, in hypothalamic slices of rat brain to discover whether the leptin or melanocortin receptor-4 (MCR-4) agonists, which act as satiety signals, can influence the release of this neurotransmitter. Basal and potassium-stimulated NPY release from hypothalamic slices was not significantly altered by the addition of recombinant murine leptin. However, the melanocortin-4 agonists, alpha-MSH and MT-II, significantly inhibited potassium-stimulated NPY release (p < 0.01) without significantly altering basal NPY release. However, the MCR-4 antagonist, agouti-related protein, did not significantly alter either basal or stimulated NPY release. In conclusion, hypothalamic NPY release can be attenuated by MCR-4 agonists, but not by leptin, suggesting that the activation of MCR-4 receptors leading to satiety can also further inhibit food intake through an inhibition of orexigenic NPYergic activity.  相似文献   

20.
Neurotransmitter release from presynaptic nerve terminals is regulated by soluble NSF attachment protein receptor (SNARE) complex–mediated synaptic vesicle fusion. Tomosyn inhibits SNARE complex formation and neurotransmitter release by sequestering syntaxin-1 through its C-terminal vesicle-associated membrane protein (VAMP)–like domain (VLD). However, in tomosyn-deficient mice, the SNARE complex formation is unexpectedly decreased. In this study, we demonstrate that the N-terminal WD-40 repeat domain of tomosyn catalyzes the oligomerization of the SNARE complex. Microinjection of the tomosyn N-terminal WD-40 repeat domain into neurons prevented stimulated acetylcholine release. Thus, tomosyn inhibits neurotransmitter release by catalyzing oligomerization of the SNARE complex through the N-terminal WD-40 repeat domain in addition to the inhibitory activity of the C-terminal VLD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号