首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Every cell is separated from its external environment by a lipid membrane. Survival depends on the regulated and selective transport of nutrients, waste products and regulatory molecules across these membranes, a process that is often mediated by integral membrane proteins. The largest and most diverse of these membrane transport systems is the ATP binding cassette (ABC) family of membrane transport proteins. The ABC family is a large evolutionary conserved family of transmembrane proteins (> 250 members) present in all phyla, from bacteria to Homo sapiens, which require energy in the form of ATP hydrolysis to transport substrates against concentration gradients. In prokaryotes the majority of ABC transporters are involved in the transport of nutrients and other macromolecules into the cell. In eukaryotes, with the exception of the cystic fibrosis transmembrane conductance regulator (CFTR/ABCC7), ABC transporters mobilize substrates from the cytoplasm out of the cell or into specific intracellular organelles. This review focuses on the members of the ABCG subfamily of transporters, which are conserved through evolution in multiple taxa. As discussed below, these proteins participate in multiple cellular homeostatic processes, and functional mutations in some of them have clinical relevance in humans.  相似文献   

2.
Chen M  Bradley MN  Beaven SW  Tontonoz P 《FEBS letters》2006,580(20):4835-4841
The liver X receptors (LXRs) function as nutritional sensors for cholesterol and have important roles in lipid metabolism, glucose homeostasis, and inflammation. We provide the first evidence that LXRs are phosphorylated proteins. Mutational analysis and metabolic labeling indicate LXRalpha is phosphorylated on serine 198 in the hinge region. This is a consensus target for the MAPK family. A phosphorylation-deficient mutant, LXRalpha S198A, remains nuclear and responds to ligands like the wild-type protein. The biological significance of LXR phosphorylation remains to be elucidated but could provide a novel mechanism for the regulation of LXR signaling pathways and cellular metabolism.  相似文献   

3.
ATP binding cassette (ABC) transporters represent a large and diverse family of proteins that transport specific substrates across a membrane. The importance of these transporters is illustrated by the finding that inactivating mutations within 17 different family members are known to lead to specific human diseases. Clinical data from humans and/or studies with mice lacking functional transporters indicate that ABCA1, ABCG1, ABCG4, ABCG5 and ABCG8 are involved in cholesterol and/or phospholipid transport. This review discusses the multiple mechanisms that control cellular sterol homeostasis, including the roles of microRNAs, nuclear and cell surface receptors and ABC transporters, with particular emphasis on recent findings that have provided insights into the role(s) of ABCG1. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

4.
Transport of phospholipids across cell membranes plays a key role in a wide variety of biological processes. These include membrane biosynthesis, generation and maintenance of membrane asymmetry, cell and organelle shape determination, phagocytosis, vesicle trafficking, blood coagulation, lipid homeostasis, regulation of membrane protein function, apoptosis, etc. P4-ATPases and ATP binding cassette (ABC) transporters are the two principal classes of membrane proteins that actively transport phospholipids across cellular membranes. P4-ATPases utilize the energy from ATP hydrolysis to flip aminophospholipids from the exocytoplasmic (extracellular/lumen) to the cytoplasmic leaflet of cell membranes generating membrane lipid asymmetry and lipid imbalance which can induce membrane curvature. Many ABC transporters play crucial roles in lipid homeostasis by actively transporting phospholipids from the cytoplasmic to the exocytoplasmic leaflet of cell membranes or exporting phospholipids to protein acceptors or micelles. Recent studies indicate that some ABC proteins can also transport phospholipids in the opposite direction. The importance of P4-ATPases and ABC transporters is evident from the findings that mutations in many of these transporters are responsible for severe human genetic diseases linked to defective phospholipid transport. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   

5.
6.
The strongest known genetic risk factor for the development of late-onset Alzheimer disease is inheritance of the apolipoprotein (apo) E4 (ε4 allele) although the mechanisms underlying this connection are still not entirely clear. In this review, we shall discuss the role of apo E in the brain, particularly in relation to Alzheimer disease. Cholesterol transport and homeostasis in the central nervous system (CNS) are separated from that in the peripheral circulation by the blood–brain barrier. However, the brain operates its own lipoprotein transport system that is mediated by high density lipoprotein-sized, apo E-containing lipoproteins that are synthesized and secreted by glial cells (primarily astrocytes). Several ATP-binding cassette (ABC) transporters are expressed in the brain, including ABCA1 and ABCG1 which play important roles in the transfer of phospholipids and cholesterol to apo E. The astrocyte-derived apo E-containing lipoproteins can bind to, and be internalized by, receptors of the low density lipoprotein receptor superfamily that are located on the surface of neurons. In addition to these receptors serving as endocytosis receptors for lipoproteins, several of these receptors also act as signaling receptors in neurons and activate pathways involved in axonal growth, as well as neuronal survival. These beneficial pathways appear to be enhanced to a greater extent by apo E3 than by apo E4. Apo E has also been implicated in the deposition of amyloid plaques since apo E3, more readily than apo E4, forms a complex with Aß peptides, and mediates the degradation of amyloid deposits.  相似文献   

7.
Lipid rafts have been implicated in many cellular functions, including protein and lipid transport and signal transduction. ATP-binding cassette (ABC) transporters have also been localized in these membrane domains. In this review the evidence for this specific localization will be evaluated and discussed in terms of relevance to ABC transporter function. We will focus on three ABC transporters of the A, B and C subfamily, respectively. Two of these transporters are relevant to multidrug resistance in tumor cells (Pgp/ABCB1 and MRP1/ABCC1), while the third (ABCA1) is extensively studied in relation to the reverse cholesterol pathway and cellular cholesterol homeostasis. We will attempt to derive a generalized model of lipid rafts to which they associate based on the use of various different lipid raft isolation procedures. In the context of lipid rafts, modulation of ABC transporter localization and function by two relevant lipid classes, i.e. sphingolipids and cholesterol, will be discussed.  相似文献   

8.
ATP-binding cassette (ABC) transporters ABCA1 and ABCG1 mediate the efflux of cholesterol and other sterols. Both transporters are expressed on the fetal capillaries of the placenta and are involved in maternal-to-fetal cholesterol delivery. In this study, we report that ABCA1 and ABCG1 are also present on the syncytiotrophoblast, the maternal facing placental membrane. Syncytial ABCA1 expression is apical, suggesting a role in cholesterol efflux to the mother, while ABCG1 is expressed basolaterally indicating transport to the fetus. Silencing of ABCA1 expression in primary trophoblasts in culture, or pharmacological antagonism by glyburide, decreased cholesterol efflux to apolipoprotein A-I (apoA-I) compared to controls, while ABCG1-silencing decreased cholesterol efflux to high density lipoproteins (HDL). In contrast, treatment with endogenous or synthetic LXR α/β ligands such as T0901317 increased ABCA1 and ABCG1 expression and enhanced cholesterol efflux to apoA-I and HDL, respectively, while treatment with pharmacological PPAR-α or -γ ligands was without effect. Trophoblasts transfected with ABCA1 or ABCG1 siRNA were more sensitive to toxic oxysterols substrates (25-hydroxycholesterol and 7-ketocholesterol) compared to mock-transfected cells, while prior treatment with T0901317 reduced oxysterol-mediated toxicity. These results identify syncytial ABCA1 and ABCG1 as important, inducible cholesterol transporters which also prevent placental accumulation of cytotoxic oxysterols.  相似文献   

9.
The association of hypercholesterolemia and obesity with airway hyperresponsiveness has drawn increasing attention to the potential role of cholesterol and lipid homeostasis in lung physiology and in chronic pulmonary diseases such as asthma. We have recently shown that activation of the nuclear hormone receptor liver X receptor (LXR) stimulates cholesterol efflux in human airway smooth muscle (hASM) cells and induces expression of the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1, members of a family of proteins that mediate reverse cholesterol and phospholipid transport. We show here that ABCA1 is responsible for all LXR-mediated cholesterol and phospholipid efflux to both apolipoprotein AI and high-density lipoprotein acceptors. In contrast, ABCG1 does not appear to be required for this process. Moreover, we show that hASM cells respond to increased levels of cholesterol by inducing expression of ABCA1 and ABCG1 transporters, a process that is dependent on LXR expression. These findings establish a critical role for ABCA1 in reverse cholesterol and phospholipid transport in airway smooth muscle cells and suggest that dysregulation of cholesterol homeostasis in these cells may be important in the pathogenesis of diseases such as asthma.  相似文献   

10.
Members of the ATP-binding cassette (ABC) family of membrane-bound transporters are involved in multiple aspects of transport and redistribution of various lipids and their conjugates. Most ABC transporters localize to the plasma membrane; some are associated with liquid-ordered cholesterol-/sphingolipid-rich microdomains, and to a lesser extent the membranes of the Golgi and endoplasmic reticulum. Hence, ABC transporters are well placed to regulate plasma membrane lipid composition and the efflux and redistribution of structural phospholipids and sphingolipids during periods of cellular stress and recovery. ABC transporters can also modulate cellular sensitivity to extrinsic pro-apoptotic signals through regulation of sphingomyelin-ceramide biosynthesis and metabolism. The functionality of ABC transporters is, in turn, modulated by the lipid content of the microdomains in which they reside. Cholesterol, a major membrane microdomain component, is not only a substrate of several ABC transporters, but also regulates ABC activity through its effects on microdomain structure. Several important bioactive lipid mediators and toxic lipid metabolites are also effluxed by ABC transporters. In this review, the complex interactions between ABC transporters and their lipid/sterol substrates will be discussed and analyzed in the context of their relevance to cellular function, toxicity and apoptosis.  相似文献   

11.
The adenosine A2A receptor (A2AR) plays an important role in the regulation of inflammatory and immune responses. Our previous work has demonstrated that A2AR agonists exhibit atheroprotective effects by increasing expression of reverse cholesterol transport proteins in cultured human macrophages. This study explores the impact of pharmacologic activation/inhibition and gene silencing of A2AR on cholesterol homeostasis in both THP-1 human monocytes/macrophages and primary human aortic endothelial cells (HAEC).  相似文献   

12.
CYP27A1, an enzyme involved in regulating cellular cholesterol homeostasis, converts cholesterol into 27-hydroxycholesterol (27-HC). The relationship between CYP27A1 and cell proliferation was studied to determine the role of CYP27A1 in bladder cancer. The expression of CYP27A1 in three bladder cancer cell lines (T24, UM-UC-3 and 5637) were assessed by qRT-PCR and Western blotting, and cells with stable CYP27A1 expression were generated by lentiviral infection. Cell proliferation was detected by MTT assays, colony formation assays and a tumor xenograft model in vitro and in vivo, and the intracellular 27-HC and cholesterol secretion levels were detected by enzyme-linked immunosorbent assays (ELISA). The results revealed that CYP27A1 expression was downregulated in androgen receptor (AR)-positive T24/UM-UC-3 cells compared with AR-negative 5637 cell. After CYP27A1 expression was restored, cell proliferation was inhibited in vitro and in vivo because much more intracellular 27-HC was produced in the CYP27A1-overexpressing cells than in the control cells. Both T24 and UM-UC-3 cells treated with 27-HC showed similar results. In addition, CYP27A1/27HC could reduce the cellular cholesterol level in both T24 and UM-UC-3 cells by upregulating ATP-binding cassette transporters G1 and A1 (ABCG1 and ABCA1) through Liver X receptors (LXRs) pathway and downregulating low-density lipoprotein receptor (LDLR) expression. These findings all suggest that CYP27A1 is a critical cholesterol sensor in bladder cancer cells that may contribute significantly to bladder cancer proliferation.  相似文献   

13.
Structure, function and regulation of the ABC1 gene product   总被引:17,自引:0,他引:17  
  相似文献   

14.
动脉粥样硬化中胆固醇外流的研究进展   总被引:1,自引:0,他引:1  
三磷酸腺苷结合盒转运体A1(ABCA1)、三磷酸腺苷结合盒转运体G1(ABCG1)和B族Ⅰ型清道夫受体(SR-BⅠ)介导的胆固醇外流是巨噬细胞内3条主要的胆固醇外流途径,对维持细胞内胆固醇动态平衡至关重要,其中转运体的功能及其表达的调节、胞外接受体的数量和活性等对细胞内胆固醇外流效率有重要的决定作用.最新研究发现,动脉粥样硬化(As)病变中出现的脂类蓄积、炎症、氧化应激、缺氧和胰岛素抵抗等病理情况,显著影响胆固醇转运体的表达,进而影响胆固醇外流及As的发生发展.本文主要针对As病变细胞内各胆固醇外流途径的作用及常伴随的脂类蓄积、炎症、氧化应激、缺氧和胰岛素抵抗现象,对胆固醇转运体表达调节的最新进展做一综述,以期为As治疗提供新理论依据和药物靶点,推动As治疗方法的发展.  相似文献   

15.
16.
17.
18.
ABC transporters in lipid transport   总被引:9,自引:0,他引:9  
Since it was found that the P-glycoproteins encoded by the MDR3 (MDR2) gene in humans and the Mdr2 gene in mice are primarily phosphatidylcholine translocators, there has been increasing interest in the possibility that other ATP binding cassette (ABC) transporters are involved in lipid transport. The evidence reviewed here shows that the MDR1 P-glycoprotein and the multidrug resistance (-associated) transporter 1 (MRP1) are able to transport lipid analogues, but probably not major natural membrane lipids. Both transporters can transport a wide range of hydrophobic drugs and may see lipid analogues as just another drug. The MDR3 gene probably arose in evolution from a drug-transporting P-glycoprotein gene. Recent work has shown that the phosphatidylcholine translocator has retained significant drug transport activity and that this transport is inhibited by inhibitors of drug-transporting P-glycoproteins. Whether the phosphatidylcholine translocator also functions as a transporter of some drugs in vivo remains to be seen. Three other ABC transporters were recently shown to be involved in lipid transport: ABCR, also called Rim protein, was shown to be defective in Stargardt's macular dystrophy; this protein probably transports a complex of retinaldehyde and phosphatidylethanolamine in the retina of the eye. ABC1 was shown to be essential for the exit of cholesterol from cells and is probably a cholesterol transporter. A third example, the ABC transporter involved in the import of long-chain fatty acids into peroxisomes, is discussed in the chapter by Hettema and Tabak in this volume.  相似文献   

19.
脑是富含胆固醇的器官,机体大约有25%的胆固醇集中在脑组织中.ATP结合盒超家族转运蛋白对脑组织中胆固醇的膜外转运和动态平衡起着重要的调节作用.研究发现,ATP结合盒超家族转运蛋白亚体ABCG1、ABCG4和ABCA1在成体脑组织中存在不同程度的表达,一种或多种亚体的缺失可以导致神经退行性病变.然而,ATP结合盒超家族转运蛋白亚体对脑发育过程中脑胆固醇动态变化的调节缺乏相关性的报道.在本研究中,从低胆固醇饮食喂养的C57BL/6J小鼠中获取出生后不同发育时期的脑组织,对ABCG1、ABCG4和ABCA1的mRNA与蛋白质表达水平进行测定,并对脑组织和血清中ATP结合盒超家族转运蛋白的表达水平与胆固醇水平的相关性进行研究.同时,使用ABCG1、ABCG4单一基因敲除鼠和ABCG1、ABCG4双基因敲除鼠,研究ATP结合盒超家族转运蛋白对与胆固醇合成的相关基因表达的影响以及对脑组织胆固醇代谢的调节作用.结果发现,ABCG1、ABCG4和ABCA1在机体多个器官中均有表达,但ABCG1和ABCG4在小鼠脑组织中表达量最高.在脑组织发育过程中,ABCG1和ABCG4mRNA水平呈现明显的表达时效性,小鼠于出生后42天达到峰值,而ABCA1 mRNA的表达水平无明显变化.血清和脑组织中中酯化型胆固醇水平呈双高峰分布,也于出生后42天达到最高.基因敲除鼠模型显示,单一敲除ABCG1或者ABCG4基因对脑组织胆固醇水平无明显影响,而ABCG1和ABCG4基因的同时缺失导致脑胆固醇水平显著升高,并明显降低胆固醇合成相关基因的表达水平.本研究表明,在脑发育成熟过程中,ATP结合盒超家族转运蛋白亚体ABCG1和ABCG4,而非ABCA1,以调节脑胆固醇的膜外转运;ABCG1和ABCG4互补调控脑胆固醇的动态平衡.  相似文献   

20.
ABC (ATP-binding cassette) proteins actively transport a wide variety of substrates, including peptides, amino acids, sugars, metals, drugs, vitamins and lipids, across extracellular and intracellular membranes. Of the 49 hum an ABC proteins, a significant number are known to mediate the extrusion of lipids from membranes or the flipping of membrane lipids across the bilayer to generate and maintain membrane lipid asymmetry. Typical lipid substrates include phospholipids, sterols, sphingolipids, bile acids and related lipid conjugates. Members of the ABCA subfamily of ABC transporters and other ABC proteins such as ABCB4, ABCG1 and ABCG5/8 implicated in lipid transport play important roles in diverse biological processes such as cell signalling, membrane lipid asymmetry, removal of potentially toxic compounds and metabolites, and apoptosis. The importance of these ABC lipid transporters in cell physiology is evident from the finding that mutations in the genes encoding many of these proteins are responsible for severe inherited diseases. For example, mutations in ABCA1 cause Tangier disease associated with defective efflux of cholesterol and phosphatidylcholine from the plasma membrane to the lipid acceptor protein apoA1 (apolipoprotein AI), mutations in ABCA3 cause neonatal surfactant deficiency associated with a loss in secretion of the lipid pulmonary surfactants from lungs of newborns, mutations in ABCA4 cause Stargardt macular degeneration, a retinal degenerative disease linked to the reduced clearance of retinoid compounds from photoreceptor cells, mutations in ABCA12 cause harlequin and lamellar ichthyosis, skin diseases associated with defective lipid trafficking in keratinocytes, and mutations in ABCB4 and ABCG5/ABCG8 are responsible for progressive intrafamilial hepatic disease and sitosterolaemia associated with defective phospholipid and sterol transport respectively. This chapter highlights the involvement of various mammalian ABC transporters in lipid transport in the context of their role in cell signalling, cellular homoeostasis, apoptosis and inherited disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号