首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycerophospholipids are the most abundant membrane lipid constituents in most eukaryotic cells. As a consequence, phospholipid class and acyl chain homeostasis are crucial for maintaining optimal physical properties of membranes that in turn are crucial for membrane function. The topic of this review is our current understanding of membrane phospholipid homeostasis in the reference eukaryote Saccharomyces cerevisiae. After introducing the physical parameters of the membrane that are kept in optimal range, the properties of the major membrane phospholipids and their contributions to membrane structure and dynamics are summarized. Phospholipid metabolism and known mechanisms of regulation are discussed, including potential sensors for monitoring membrane physical properties. Special attention is paid to processes that maintain the phospholipid class specific molecular species profiles, and to the interplay between phospholipid class and acyl chain composition when yeast membrane lipid homeostasis is challenged. Based on the reviewed studies, molecular species selectivity of the lipid metabolic enzymes, and mass action in acyl-CoA metabolism are put forward as important intrinsic contributors to membrane lipid homeostasis.  相似文献   

2.
Phospholipids are important structural and functional components of all biological membranes and define the compartmentation of organelles. Mitochondrial phospholipids comprise a significant proportion of the entire phospholipid content of most eukaroytic cells. In the heart, a tissue rich in mitochondria, the mitochondrial phospholipids provide for diverse roles in the regulation of various mitochondrial processes including apoptosis, electron transport, and mitochondrial lipid and protein import. It is well documented that alteration in the content and fatty acid composition of phospholipids within the heart is linked to alterations in myocardial electrical activity. In addition, reduction in the specific mitochondrial phospholipid cardiolipin is an underlying biochemical cause of Barth Syndrome, a rare and often fatal X-linked genetic disease that is associated with cardiomyopathy. Thus, maintenance of both the content and molecular composition of phospholipids synthesized within the mitochondria is essential for normal cardiac function. This review will focus on the function and regulation of the biosynthesis and resynthesis of mitochondrial phospholipids in the mammalian heart.  相似文献   

3.
4.
Regulation of fatty acid metabolism in bacteria   总被引:3,自引:0,他引:3  
  相似文献   

5.
Mammalian lipid droplets (LDs) are specialized cytosolic organelles consisting of a neutral lipid core surrounded by a membrane made up of a phospholipid monolayer and a specific population of proteins that varies according to the location and function of each LD. Over the past decade, there have been significant advances in the understanding of LD biogenesis and functions. LDs are now recognized as dynamic organelles that participate in many aspects of cellular homeostasis plus other vital functions. LD biogenesis is a complex, highly-regulated process with assembly occurring on the endoplasmic reticulum although aspects of the underpinning molecular mechanisms remain elusive. For example, it is unclear how many enzymes participate in the biosynthesis of the neutral lipid components of LDs and how this process is coordinated in response to different metabolic cues to promote or suppress LD formation and turnover. In addition to enzymes involved in the biosynthesis of neutral lipids, various scaffolding proteins play roles in coordinating LD formation. Despite their lack of ultrastructural diversity, LDs in different mammalian cell types are involved in a wide range of biological functions. These include roles in membrane homeostasis, regulation of hypoxia, neoplastic inflammatory responses, cellular oxidative status, lipid peroxidation, and protection against potentially toxic intracellular fatty acids and lipophilic xenobiotics. Herein, the roles of mammalian LDs and their associated proteins are reviewed with a particular focus on their roles in pathological, immunological and anti-toxicological processes.  相似文献   

6.
Mammalian cells maintain the phospholipid compositions of their different membranes remarkably constant. Beside de novo synthesis, degradation, and intracellular trafficking, acyl chain remodeling plays an important role in phospholipid homeostasis. However, many key details of this process remain unresolved, largely because of limitations of existing methodologies. Here we describe a novel approach that allows one to study metabolism of individual phospholipid species in unprecedented detail. Forty different phosphatidylethanolamine (PE) or -serine (PS) species with a deuterium-labeled head group were synthesized and introduced to BHK21 or HeLa cells using cyclodextrin-mediated transfer. Their metabolism was then monitored in detail by electrospray ionization mass spectrometry. Atypical PE and PS species were rapidly remodeled at both sn1 and sn2 position, yielding a molecular species profile similar to that the endogenous PE and PS. In contrast, remodeling of exogenous species identical or similar to major endogenous ones was more limited and much slower. Major differences in remodeling pathways and kinetics were observed between species within a class, as well as between corresponding PE and PS species. These data along with those obtained with pharmacological inhibitors strongly suggest that multiple lipid class-specific A-type phospholipases and acyl transferases are involved in aminophospholipid remodeling. In conclusion, the approach described here provides highly detailed information on remodeling of exogenously added (amino)glycerophospholipids and should thus be very helpful when elucidating the proteins and processes maintaining molecular species homeostasis.  相似文献   

7.
Lipidomics: practical aspects and applications   总被引:3,自引:0,他引:3  
Lipidomics is the characterization of the molecular species of lipids in biological samples. The polar lipids that comprise the bilayer matrix of the constituent cell membranes of living tissues are highly complex and number many hundreds of distinct lipid species. These differ in the nature of the polar group representing the different classes of lipid. Each class consists of a range of molecular species depending on the length, position of attachment and number of unsaturated double bonds in the associated fatty acids. The origin of this complexity is described and the biochemical processes responsible for homeostasis of the lipid composition of each morphologically-distinct membrane is considered. The practical steps that have been developed for the isolation of membranes and the lipids there from, their storage, separation, detection and identification by liquid chromatography coupled to mass spectrometry are described. Application of lipidomic analyses and examples where clinical screening for lipidoses in collaboration with mass spectrometry facilities are considered from the user point of view.  相似文献   

8.
Recognition of the importance of lipid signaling in cellular function has led to rapid progress in the technology of lipid analysis. Measurements of lipid species changes are central to defining the networks of cell signaling (e.g., receptor activation by hormones or drugs) and lipids are involved in many biochemical and pathological processes. During the last several years our laboratory has focused on developing efficient methods for extraction of glycerophospholipids from biological systems and their detection and identification by mass spectrometry. We analyze phospholipid changes in mammalian cells as a result of a defined ligand stimulation strategy that supports the research questions of the consortium. The improvement of mass spectrometry techniques for phospholipid analysis combined with sophisticated computational methods developed in our group has facilitated simultaneous analysis of hundreds of phospholipid species in mammalian cells. This information is presented as Lipid Arrays (or more precisely as virtual arrays) and allows identification of temporal changes in membrane phospholipid species between two contrasting biological conditions (e.g., unstimulated basal vs. stimulated or as a contrast between normal and disease stages). Using the lipidomics approach, we are able to identify approximately 450 phospholipid species from total membrane extracts and qualitatively measure pattern response changes initiated by cell surface receptors. As such, this approach facilitates the elucidation of the metabolic changes induced by a perturbation in the cell and recognition of patterns of signaling.  相似文献   

9.
Transport of phospholipids across cell membranes plays a key role in a wide variety of biological processes. These include membrane biosynthesis, generation and maintenance of membrane asymmetry, cell and organelle shape determination, phagocytosis, vesicle trafficking, blood coagulation, lipid homeostasis, regulation of membrane protein function, apoptosis, etc. P4-ATPases and ATP binding cassette (ABC) transporters are the two principal classes of membrane proteins that actively transport phospholipids across cellular membranes. P4-ATPases utilize the energy from ATP hydrolysis to flip aminophospholipids from the exocytoplasmic (extracellular/lumen) to the cytoplasmic leaflet of cell membranes generating membrane lipid asymmetry and lipid imbalance which can induce membrane curvature. Many ABC transporters play crucial roles in lipid homeostasis by actively transporting phospholipids from the cytoplasmic to the exocytoplasmic leaflet of cell membranes or exporting phospholipids to protein acceptors or micelles. Recent studies indicate that some ABC proteins can also transport phospholipids in the opposite direction. The importance of P4-ATPases and ABC transporters is evident from the findings that mutations in many of these transporters are responsible for severe human genetic diseases linked to defective phospholipid transport. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   

10.
The function and capacity of the endoplasmic reticulum (ER) is determined by multiple processes ranging from the local regulation of peptide translation, translocation, and folding, to global changes in lipid composition. ER homeostasis thus requires complex interactions amongst numerous cellular components. However, describing the networks that maintain ER function during changes in cell behavior and environmental fluctuations has, to date, proven difficult. Here we perform a systems-level analysis of ER homeostasis, and find that although signaling networks that regulate ER function have a largely modular architecture, the TORC1-SREBP signaling axis is a central node that integrates signals emanating from different sub-networks. TORC1-SREBP promotes ER homeostasis by regulating phospholipid biosynthesis and driving changes in ER morphology. In particular, our network model shows TORC1-SREBP serves to integrate signals promoting growth and G1-S progression in order to maintain ER function during cell proliferation.  相似文献   

11.
12.
Membrane lipids—phospholipids, fatty acids, and cholesterol—participate in thermal adaptation of ectotherms (bacteria, amphibians, reptiles, fishes) mainly via changes in membrane viscosity caused by the degree of fatty acids unsaturation, cholesterol/phospholipids ratio, and phospholipid composition. Studies of thermal adaptation of endotherms (mammals and birds) revealed the regulatory role of lipids in hibernation. Cholesterol and fatty acids participate in regulation of the parameters of torpor, gene expression, and activity of enzymes of lipid metabolism. Some changes in lipid metabolism during artificial and natural hypobiosis, namely, increased concentration of cholesterol and fatty acids in blood and decreased cholesterol concentration in neocortex, are analogous to those observed under stress conditions and coincide with mammalian nonspecific reactions to environmental agents. It is shown that the effects of artificial and natural hypobiosis on lipid composition of mammalian cell membranes are different. Changes in lipid composition cause changes in membrane morphology during mammalian hibernation. The effect of hypobiosis on lipid composition of membranes and cell organelles is specific and seems to be defined by the role of lipids in signaling systems. Comparative study of lipid metabolism in membranes and organelles during natural and artificial hypobiosis is promising for elucidation of adaptation of mammals to low ambient temperatures.  相似文献   

13.
Lipid droplets (LDs) are conserved organelles for intracellular neutral lipid storage. Recent studies suggest that LDs function as direct lipid sources for autophagy, a central catabolic process in homeostasis and stress response. Here, we demonstrate that LDs are dispensable as a membrane source for autophagy, but fulfill critical functions for endoplasmic reticulum (ER) homeostasis linked to autophagy regulation. In the absence of LDs, yeast cells display alterations in their phospholipid composition and fail to buffer de novo fatty acid (FA) synthesis causing chronic stress and morphologic changes in the ER. These defects compromise regulation of autophagy, including formation of multiple aberrant Atg8 puncta and drastically impaired autophagosome biogenesis, leading to severe defects in nutrient stress survival. Importantly, metabolically corrected phospholipid composition and improved FA resistance of LD-deficient cells cure autophagy and cell survival. Together, our findings provide novel insight into the complex interrelation between LD-mediated lipid homeostasis and the regulation of autophagy potentially relevant for neurodegenerative and metabolic diseases.  相似文献   

14.
Eukaryotic cells can synthesize thousands of different lipid molecules that are incorporated into their membranes. This involves the activity of hundreds of enzymes with the task of creating lipid diversity. In addition, there are several, typically redundant, mechanisms to transport lipids from their site of synthesis to other cellular membranes. Biosynthetic lipid transport helps to ensure that each cellular compartment will have its characteristic lipid composition that supports the functions of the associated proteins. In this article, we provide an overview of the biosynthesis of the major lipid constituents of cell membranes, that is, glycerophospholipids, sphingolipids, and sterols, and discuss the mechanisms by which these newly synthesized lipids are delivered to their target membranes.  相似文献   

15.
An in vitro acrosome-like reaction was induced in spermatozoa from the boar cauda epididymis by incubation in Tyrode's solution containing 1 mg/ml fatty acid-free bovine serum albumin. Plasma membranes were isolated from the spermatozoa at different times during the incubation and analyzed for their lipid composition. The total lipid, phospholipid, and glycolipid content of the membranes did not change during the acrosome-like reaction, whereas the amount of diacylglycerols and free fatty acids increased. Within the phospholipid class, a decrease of the inositol phospholipid and and sphingomyelin content was observed, whereas the other phospholipids of the plasma membranes did not decrease significantly after 2 h of incubation. Changes in the sterol composition of the membranes were also observed. The onset of the lipid changes was correlated with the uptake of extracellular calcium by the spermatozoa. These results for the lipid changes in isolated sperm plasma membranes during an in vitro acrosome reaction provide the first direct evidence that a modulation of the plasma membrane lipid composition is involved in an acrosome-like reaction of mammalian spermatozoa.  相似文献   

16.
Two PLA2 are involved in cell signaling and in phospholipid homeostasis in mammalian cells. The first one is a 14 kDa protein whose cDNA was cloned in 1989. This enzyme exhibits a strong homology with pancreatic PLA2 but is more related to type II PLA2. This PLA2 is secreted by different tissues in response to inflammatory processes. Their main function seems to be the hydrolysis of membranes of altered cells or of bacteria and the stimulation of lipid mediator synthesis. The first cDNA of an another important PLA2 group was cloned in 1991. The protein deduced is a 88 kDa cytoplasmic protein. It is involved in cell signaling by stimulating the production of free fatty acids and of their oxygenated products. These products might in turn either activate transducing proteins or stimulate membrane receptors.  相似文献   

17.
18.
Phosphatidylcholine is the major phospholipid in eukaryotic cells. It serves as a structural component of cell membranes and a reservoir of several lipid messengers. Recent studies in yeast and mammalian systems have revealed interrelationships between the two pathways of phosphatidylcholine metabolism, and between these pathways and those for CTP synthesis and secretion via the Golgi. These processes involve the regulation of the CDP-choline and phosphatidylethanolamine-methylation pathways of phosphatidylcholine synthesis, CTP synthetase, phospholipase D and the phospholipid-transfer protein Sec14p.  相似文献   

19.
Lipid rafts display a lateral heterogeneity forming membrane microdomains that hold a fundamental role on biological membranes and are indispensable to physiological functions of cells. Oxidative stress in cellular environments may cause lipid oxidation, changing membrane composition and organization, thus implying in effects in cell signaling and even loss of homeostasis. The individual contribution of oxidized lipid species to the formation or disruption of lipid rafts in membranes still remains unknown. Here, we investigate the role of different structures of oxidized phospholipids on rafts microdomains by carefully controlling the membrane composition. Our experimental approach based on fluorescence microscopy of giant unilamellar vesicles (GUV) enables the direct visualization of the impact of hydroperoxidized POPC lipid (referred to as POPCOOH) and shortened chain lipid PazePC (1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine) on phase separation. We found that the molecular structure of oxidized lipid is of paramount importance on lipid mixing and/or demixing. The hydrophobic mismatch promoted by POPCOOH coupled to its cylindrical molecular shape favor microdomains formation. In contrast, the conical shape of PazePC causes disarrangement of lipid 2D organized platforms. Our findings contribute to better unraveling how oxidized phospholipids can trigger formation or disruption of lipid rafts. As a consequence, phospholipid oxidation may indirectly affect association or dissociation of key biomolecules in the rafts thus altering cell signaling and homeostasis.  相似文献   

20.
Phosphatidylcholine (PC) is a very abundant membrane lipid in most eukaryotes including the model organism Saccharomyces cerevisiae. Consequently, the molecular species profile of PC, i.e. the ensemble of PC molecules with acyl chains differing in number of carbon atoms and double bonds, is important in determining the physical properties of eukaryotic membranes, and should be tightly regulated. In this review current insights in the contributions of biosynthesis, turnover, and remodeling by acyl chain exchange to the maintenance of PC homeostasis at the level of the molecular species in yeast are summarized. In addition, the phospholipid class-specific changes in membrane acyl chain composition induced by PC depletion are discussed, which identify PC as key player in a novel regulatory mechanism balancing the proportions of bilayer and non-bilayer lipids in yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号