首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mulibrey nanism is a rare growth disorder of prenatal onset caused by mutations in the TRIM37 gene, which encodes a RING-B-box-coiled-coil protein. The pathogenetic mechanisms of mulibrey nanism are unknown. We have used transiently transfected cells and antibodies raised against the predicted TRIM37 protein to characterize the TRIM37 gene product and to determine its intracellular localization. We show that the human TRIM37 cDNA encodes a peroxisomal protein with an apparent molecular weight of 130 kD. Peroxisomal localization is compromised in mutant protein representing the major Finnish TRIM37 mutation but is retained in the protein representing the minor Finnish mutation. Colocalization of endogenous TRIM37 with peroxisomal markers was observed by double immunofluorescence staining in HepG2 and human intestinal smooth muscle cell lines. In human tissue sections, TRIM37 shows a granular cytoplasmic pattern. Endogenous TRIM37 is not imported into peroxisomes in peroxin 1 (PEX1(-/-)) and peroxin 5 (PEX5(-/-)) mutant fibroblasts but is imported normally in peroxin 7 (PEX7(-/-)) deficient fibroblasts, giving further evidence for a peroxisomal localization of TRIM37. Fibroblasts derived from patients with mulibrey nanism lack C-terminal TRIM37 immunoreactivity but stain normally for both peroxisomal matrix and membrane markers, suggesting apparently normal peroxisome biogenesis in patient fibroblasts. Taken together, this molecular evidence unequivocally indicates that TRIM37 is located in the peroxisomes, and Mulibrey nanism thus can be classified as a new peroxisomal disorder.  相似文献   

2.
3.
The TRIM family of proteins is distinguished by its tripartite motif (TRIM). Typically, TRIM proteins contain a RING finger domain, one or two B-box domains, a coiled-coil domain and the more variable C-terminal domains. TRIM16 does not have a RING domain but does harbour two B-box domains. Here we showed that TRIM16 homodimerized through its coiled-coil domain and heterodimerized with other TRIM family members; TRIM24, Promyelocytic leukaemia (PML) protein and Midline-1 (MID1). Although, TRIM16 has no classic RING domain, three-dimensional modelling of TRIM16 suggested that its B-box domains adopts RING-like folds leading to the hypothesis that TRIM16 acts as an ubiquitin ligase. Consistent with this hypothesis, we demonstrated that TRIM16, devoid of a classical RING domain had auto-polyubiquitination activity and acted as an E3 ubiquitin ligase in vivo and in vitro assays. Thus via its unique structure, TRIM16 possesses both heterodimerization function with other TRIM proteins and also has E3 ubiquitin ligase activity.  相似文献   

4.
Tripartite motif (TRIM) proteins comprise a large family of RING‐type ubiquitin E3 ligases that regulate important biological processes. An emerging general model is that TRIMs form elongated antiparallel coiled‐coil dimers that prevent interaction of the two attendant RING domains. The RING domains themselves bind E2 conjugating enzymes as dimers, implying that an active TRIM ligase requires higher‐order oligomerization of the basal coiled‐coil dimers. Here, we report crystal structures of the TRIM23 RING domain in isolation and in complex with an E2–ubiquitin conjugate. Our results indicate that TRIM23 enzymatic activity requires RING dimerization, consistent with the general model of TRIM activation.  相似文献   

5.
Centrosomes are composed of a centriolar core surrounded by pericentriolar material that nucleates microtubules. The ubiquitin ligase TRIM37 localizes to centrosomes, but its centrosomal roles are not yet defined. We show that TRIM37 does not control centriole duplication, structure, or the ability of centrioles to form cilia but instead prevents assembly of an ectopic centrobin-scaffolded structured condensate that forms by budding off of centrosomes. In ∼25% of TRIM37-deficient cells, the condensate organizes an ectopic spindle pole, recruiting other centrosomal proteins and acquiring microtubule nucleation capacity during mitotic entry. Ectopic spindle pole–associated transient multipolarity and multipolar segregation in TRIM37-deficient cells are suppressed by removing centrobin, which interacts with and is ubiquitinated by TRIM37. Thus, TRIM37 ensures accurate chromosome segregation by preventing the formation of centrobin-scaffolded condensates that organize ectopic spindle poles. Mutations in TRIM37 cause the disorder mulibrey nanism, and patient-derived cells harbor centrobin condensate-organized ectopic poles, leading us to propose that chromosome missegregation is a pathological mechanism in this disorder.  相似文献   

6.
7.
8.
RFP2, a gene frequently lost in various malignancies, encodes a protein with RING finger, B-box, and coiled-coil domains that belongs to the RBCC/TRIM family of proteins. Here we demonstrate that Rfp2 is an unstable protein with auto-polyubiquitination activity in vivo and in vitro, implying that Rfp2 acts as a RING E3 ubiquitin ligase. Consequently, Rfp2 ubiquitin ligase activity is dependent on an intact RING domain, as RING deficient mutants fail to drive polyubiquitination in vitro and are stabilized in vivo. Immunopurification and tandem mass spectrometry enabled the identification of several putative Rfp2 interacting proteins localized to the endoplasmic reticulum (ER), including valosin-containing protein (VCP), a protein indispensable for ER-associated degradation (ERAD). Importantly, we also show that Rfp2 regulates the degradation of the known ER proteolytic substrate CD3-delta, but not the N-end rule substrate Ub-R-YFP (yellow fluorescent protein), establishing Rfp2 as a novel E3 ligase involved in ERAD. Finally, we show that Rfp2 contains a C-terminal transmembrane domain indispensable for its localization to the ER and that Rfp2 colocalizes with several ER-resident proteins as analyzed by high-resolution immunostaining. In summary, these data are all consistent with a function for Rfp2 as an ERAD E3 ubiquitin ligase.  相似文献   

9.
The biological significance of tripartite motif (TRIM) proteins is increasingly being appreciated due to their roles in a broad range of biological processes that associated with innate immunity. In this study, we have described the structural and functional analysis of TRIM3a from zebrafish. Annotation of domain architectures found that the TRIM3a fulfills the TRIM-NHL rule of domain composition with a Filamin/ABP280 domain and NHL repeats at its C-terminal region. In addition, the mRNA expression level of TRIM3a was the highest in brain, and with a relatively higher level in spleen, liver, and gill. A strong expression starting at 36 h post fertilization (hpf) was observed by real-time PCR and could be detected in brain by in situ hybridization, suggesting that TRIM3a protein might play an important role in brain development in zebrafish. Considering that TRIM3a has a RING finger domain, we expressed and purified the TRIM3a protein and performed ubiquitylation assays, our results showed that TRIM3a underwent self-polyubiquitylation in combination with E1, UbcH5c, biotin-ubiquitin in vitro. Meanwhile, TRIM3a-R without the RING domain was expressed and purified as well, in vitro ubiquitylation assays showed that the self-ubiquitylation of TRIM3a was dependent on its RING domain, suggesting that TRIM3a might function as a RING finger E3 ubiquitin ligase.  相似文献   

10.
11.
The tripartite motif-containing protein (TRIM) family is defined by the presence of a common domain structure composed of a RING finger, a B-box, and a coiled-coil motif. TRIM family proteins are involved in a broad range of biological processes and, consistently, their alterations result in diverse pathological conditions such as genetic diseases, viral infection, and cancer development. In this study, we found by using yeast two-hybrid screening that TRIM36 has a ubiquitin ligase activity and interacts with centromere protein-H, one of the kinetochore proteins. We also found by immunofluorescence analysis that TRIM36 colocalizes with α-tubulin, one of the microtubule proteins. Moreover, we found that overexpression of TRIM36 decelerates the cell cycle and attenuates cell growth. These results indicate that TRIM36 is potentially associated with chromosome segregation and that an excess of TRIM36 may cause chromosomal instability.  相似文献   

12.
Meiosis is a hallmark event in germ cell development that accompanies sequential events executed by numerous molecules. Therefore, characterization of these factors is one of the best strategies to clarify the mechanism of meiosis. Here, we report tripartite motif-containing 41 (TRIM41), a ubiquitin ligase E3, as an essential factor for proper meiotic progression and fertility in male mice. Trim41 knockout (KO) spermatocytes exhibited synaptonemal complex protein 3 (SYCP3) overloading, especially on the X chromosome. Furthermore, mutant mice lacking the RING domain of TRIM41, required for the ubiquitin ligase E3 activity, phenocopied Trim41 KO mice. We then examined the behavior of mutant TRIM41 (ΔRING-TRIM41) and found that ΔRING-TRIM41 accumulated on the chromosome axes with overloaded SYCP3. This result suggested that TRIM41 exerts its function on the chromosome axes. Our study revealed that Trim41 is essential for preventing SYCP3 overloading, suggesting a TRIM41-mediated mechanism for regulating chromosome axis protein dynamics during male meiotic progression.  相似文献   

13.
14.
15.
16.
TRIM E3 ubiquitin ligases regulate a wide variety of cellular processes and are particularly important during innate immune signalling events. They are characterized by a conserved tripartite motif in their N‐terminal portion which comprises a canonical RING domain, one or two B‐box domains and a coiled‐coil region that mediates ligase dimerization. Self‐association via the coiled‐coil has been suggested to be crucial for catalytic activity of TRIMs; however, the precise molecular mechanism underlying this observation remains elusive. Here, we provide a detailed characterization of the TRIM ligases TRIM25 and TRIM32 and show how their oligomeric state is linked to catalytic activity. The crystal structure of a complex between the TRIM25 RING domain and an ubiquitin‐loaded E2 identifies the structural and mechanistic features that promote a closed E2~Ub conformation to activate the thioester for ubiquitin transfer allowing us to propose a model for the regulation of activity in the full‐length protein. Our data reveal an unexpected diversity in the self‐association mechanism of TRIMs that might be crucial for their biological function.  相似文献   

17.
The SCF complex containing Skp1, Cul1, and the F-box protein FWD1 (the mouse homologue of Drosophila Slimb and Xenopus beta-TrCP) functions as the ubiquitin ligase for IkappaBalpha. FWD1 associates with Skp1 through the F-box domain and also recognizes the conserved DSGXXS motif of IkappaBalpha. The structural requirements for the interactions of FWD1 with IkappaBalpha and with Skp1 have now been investigated further. The D31A mutation (but not the G33A mutation) in the DSGXXS motif of IkappaBalpha abolished the binding of IkappaBalpha to FWD1 and its subsequent ubiquitination without affecting the phosphorylation of IkappaBalpha. The IkappaBalpha mutant D31E still exhibited binding to FWD1 and underwent ubiquitination. These results suggest that, in addition to site-specific phosphorylation at Ser(32) and Ser(36), an acidic amino acid at position 31 is required for FWD1-mediated ubiquitination of IkappaBalpha. Deletion analysis of Skp1 revealed that residues 61-143 of this protein are required for binding to FWD1. On the other hand, the highly conserved residues Pro(149), Ile(160), and Leu(164) in the F-box domain of FWD1 were dispensable for binding to Skp1. Together, these data delineate the structural requirements for the interactions among IkappaBalpha, FWD1, and Skp1 that underlie substrate recognition by the SCF ubiquitin ligase complex.  相似文献   

18.
We previously identified BTBD1 and BTBD2 as novel topoisomerase I-interacting proteins that share 80% amino acid identity. Here we report the characterization of their subcellular localization. In a number of mouse and human cells, BTBD1 and BTBD2 (BTBD1/2) colocalized to punctate or elongated cytoplasmic bodies (< 5 microm long and several per cell) that were larger and more elongated in cancer cell lines than in fibroblasts and myoblasts. A search for potential colocalizing proteins identified TRIM family members that localize to morphologically similar cytoplasmic bodies, which were then tested for colocalization with BTBD1/2. TRIM5delta, expressed as a GFP fusion, colocalized with BTBD1/2 immunostaining and appeared to serve as a scaffold for the assembly of endogenous BTBD1/2 proteins. TRIM family members contain a RING domain, B-box(es), and coiled-coil regions, which have a characteristic order and spacing (RBCC domain). RING-dependent ubiquitin ligase activity and multimerization via the coiled-coil region may be defining properties of the RBCC/TRIM protein family. We found that TRIM5delta with a deleted coiled-coil region or a mutated RING domain failed to colocalize with BTBD1/2. Additionally, TRIM5delta ubiquitylated itself in a RING finger- and UbcH5B-dependent manner. BTBD1/2 each contain a PHR-similarity region, repeated twice on the putative ubiquitin ligases PAM, highwire and RPM-1, which also contain a RING and B-box. Thus, four protein modules found on each of these putative ubiquitin ligases, a RING, a B-box and two PHR repeats, are present on BTBD1/2 and TRIM5delta that are colocalized to cytoplasmic bodies.  相似文献   

19.
LNX is a RING finger and PDZ domain containing protein that interacts with the cell fate determinant Numb. To investigate the function of LNX, we tested its RING finger domain for ubiquitin ligase activity. The isolated RING finger domain was able to function as an E2-dependent, E3 ubiquitin ligase in vitro and mutation of a conserved cysteine residue within the RING domain abolished its activity, indicating that LNX is the first described PDZ domain-containing member of the E3 ubiquitin ligase family. We have identified Numb as a substrate of LNX E3 activity in vitro and in vivo. In addition to the RING finger, a region of LNX, including the Numb PTB domain-binding site and the first PDZ domain, is required for Numb ubiquitylation. Expression of wild-type but not mutant LNX causes proteasome-dependent degradation of Numb and can enhance Notch signalling. These results suggest that the levels of mammalian Numb protein and therefore, by extension, the processes of asymmetric cell division and cell fate determination may be regulated by ubiquitin-dependent proteolysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号