首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mean activity of glycinamide ribonucleotide synthetase of fibroblasts from fetuses with trisomy 21 is 1.64 — times that of normal cells. This gene dosage effect is confirmatory of the assignment of the gene for this enzyme to human chromosome 21.  相似文献   

2.
The carbocyclic analogues of phosphoribosylamine, glycinamide ribonucleotide, and formylglycinamide ribonucleotide have been prepared as the racemates. Carbocyclic phosphoribosylamine was utilized as a substrate by the monofunctional glycinamide ribonucleotide synthetase from Escherichia coli as well as the glycinamide ribonucleotide synthetase activity of the eucaryotic trifunctional enzyme of de novo purine biosynthesis. Furthermore, carbocyclic glycinamide ribonucleotide was processed in the reverse reaction catalyzed by these enzymes. In addition, carbocyclic formylglycinamide ribonucleotide was converted, by E. coli formylglycinamide ribonucleotide synthetase, to carbocyclic formylglycinamidine ribonucleotide, which was accepted as a substrate by the aminoimidazole ribonucleotide synthetase activity of the trifunctional enzyme. This study has afforded carbocyclic substrate analogues, in particular for the chemically labile phosphoribosyl amine, for the initial steps of de novo purine biosynthesis.  相似文献   

3.
Glycinamide ribonucleotide transformylase catalyzes the conversion of glycinamide ribonucleotide and 10-formyltetrahydrofolate to formylglycinamide ribonucleotide and tetrahydrofolate. The enzyme purified from the murine lymphoma cell line L5178Y also catalyzes two other de novo purine biosynthetic activities, glycinamide ribonucleotide synthetase and aminoimidazole ribonucleotide synthetase. The transformylase reaction shows a 1:1 stoichiometry for substrate utilization and an optimum rate between pH 7.9 and 8.3. Initial velocity and dead-end inhibition patterns indicate that the kinetic mechanism of the transformylation reaction is ordered-sequential, with 10-formyltetrahydrofolate binding first. alpha, beta-Hydroxyacetamide ribonucleotide (alpha, beta-N-(hydroxyacetyl)-D-ribofuranosylamine) is shown to be an inhibitor of the transformylase, competitive against glycinamide ribonucleotide.  相似文献   

4.
Three activities on the pathway of purine biosynthesis de novo in chicken liver, namely, glycinamide ribonucleotide synthetase, glycinamide ribonucleotide transformylase, and aminoimidazole ribonucleotide synthetase, have been found to reside on the same polypeptide chain. Three diverse purification schemes, utilizing three different affinity resins, give rise to the same protein since the final material has identical specific activities for all three enzymatic reactions and a molecular weight on sodium dodecyl sulfate gels of about 110 000. A single antibody preparation precipitates all three activities and binds to the multifunctional protein obtained by two methods in Western blots. Partial chymotryptic digestion of the purified protein gives rise to two fragments, one possessing glycinamide ribonucleotide synthetase activity and the other containing glycinamide ribonucleotide transformylase activity.  相似文献   

5.
Using a series of human-hamster hybrid cell lines, a gene coding for glycinamide ribonucleotide transformylase was mapped to human chromosome 21. The availability of hybrids containing only portions of chromosome 21 allowed the gene to be assigned to the region between the q11.2 and the q22.2 bands, inclusive. Differentiation of human and hamster glycinamide ribonucleotide transformylase was accomplished via an immunoprecipitation assay that employed a polyclonal antibody raised against the human enzyme.  相似文献   

6.
Glycinamide ribonucleotide (GAR) transformylase from HeLa cells has been purified 200-fold to apparent homogeneity with a procedure using two affinity resins. The activities glycinamide ribonucleotide synthetase and aminoimidazole ribonucleotide synthetase were found to copurify with GAR transformylase. Glycinamide ribonucleotide synthetase and GAR transformylase were separable only after exposure to chymotrypsin. Antibodies raised to pure L1210 cell GAR transformylase were able to precipitate the glycinamide ribonucleotide transformylase and GAR synthetase activities from HeLa and L1210 cells both in their native and in their proteolytically shortened forms. The compound N-10-(bromoacetyl)-5,8-dideazafolate was found to inhibit formylation but to leave the ATP-requiring synthetase activities intact.  相似文献   

7.
A hybrid glycinamide ribonucleotide transformylase was assembled from two protein domains that were treated as discrete modules. One module contained the ribonucleotide binding domain from the purN glycinamide ribonucleotide transformylase; the second module contained the catalytic machinery and the formyl tetrahydrofolate binding domain from the enzyme encoded by purU, formyl tetrahydrofolate hydrolase. The resultant enzyme showed 0.1% catalytic activity of the wild-type glycinamide ribonucleotide transformylase enzyme but had a formyl transfer efficiency of 10%. A combinatorial mutagenesis approach was used to improve the solubility and formyl transfer properties of the hybrid enzyme. The mutagenized hybrid glycinamide ribonucleotide transformylase was initially expressed as a fusion to the alpha-peptide of beta-galactosidase. Clones were selected for improvement in solubility by determining which clones were capable of alpha-complementation using a blue/white screen. One clone was further characterized and found to have an improved efficiency of transfer of the ribonucleotide increasing this property to >95%.  相似文献   

8.
J Aimi  H Qiu  J Williams  H Zalkin    J E Dixon 《Nucleic acids research》1990,18(22):6665-6672
The trifunctional enzyme encoding glycinamide ribonucleotide synthetase (GARS)-aminoimidazole ribonucleotide synthetase (AIRS)-glycinamide ribonucleotide transformylase (GART) was cloned by functional complementation of an E. coli mutant using an avian liver cDNA expression library. In E. coli, genes encoding these separate activities (purD, purM, and purN, respectively) produce three proteins. The avian cDNA, in contrast, encodes a single polypeptide with all three enzyme activities. Using the avian DNA as a probe, a cDNA encoding the complete coding sequence of the trifunctional human enzyme was also isolated and sequenced. The deduced amino acid sequence of the human and avian polyproteins show extensive sequence homologies to the bacterial purD, purM, and purN encoded proteins. Avian and human liver RNAs appear to encode both a trifunctional enzyme (G-ARS-AIRS-GART) as well as an RNA which encodes only GARS. The trifunctional protein has been implicated in the pathology of Downs Syndrome and molecular tools are now available to explore this hypothesis. Initial efforts to compare the expression of GARS-AIRS-GART between a normal fibroblast cell line and a Downs Syndrome cell line indicate that the levels of RNA are similar.  相似文献   

9.
Summary. Overexpression of chromosome 21 genes is directly or indirectly responsible for the Down syndrome phenotype. In order to analyse chromosome 21 gene products (Chr21Ps), we extracted proteins from fetal human brain cortex and applied an ultracentrifugal and chromatographic prefractionation principle followed by two-dimensional gel electrophoresis (2-DE) and mass-spectrometrical analysis using high-throughput automated MALDI-TOF/TOF. Nine Chr21Ps were identified: pyridoxal kinase; superoxide dismutase [Cu/Zn] 1; carbonyl reductase 1; ES1 protein homolog, mitochondrial [Precursor]; cystathionine-beta-synthetase; T-complex protein 1, theta subunit; cystatin B; 6-phosphofructokinase; glycinamide ribonucleotide synthetase. Mass-spectrometric characterisation of Chr21Ps following separation in 2-DE gels is a useful tool for the analysis of these structures in brain, independent of antibody availability and specificity.  相似文献   

10.
Isolation of the mRNAs encoding for the three folate-requiring enzymes involved in de novo purine biosynthesis followed by their in vitro translation resulted in three separate proteins electrophoretically identical with those previously isolated. The three enzymes are glycinamide ribonucleotide transformylase, 5-aminoimidazole-4-carboxamide ribonucleotide transformylase, and 5,10-methenyl-, 5,10-methylene-, and 10-formyltetrahydrofolate synthetase. Thus these enzymes do not appear to be derived from large multifunctional proteins that are then subject to proteolysis in vivo or during in vitro purification. The levels of these enzymatic activities were increased by approximately 2-fold after raising the concentration of protein in the chicken's diet. The observed response is similar to that noted for glutamine phosphoribosylpyrophosphate amidotransferase, the presumed rate-limiting enzymatic activity for this pathway. For 5-amino-imidazole-4-carboxamide ribonucleotide transformylase and the trifunctional synthetase but not glycinamide ribonucleotide transformylase the increase in enzymatic activity correlates with higher mRNA levels.  相似文献   

11.
The nucleotide substrate specificity of human glycinamide ribonucleotide transformylase, a chemotherapeutic target, has been examined. The enzyme accepts the sarcosyl analog of glycinamide ribonucleotide, carbocyclic glycinamide ribonucleotide, and two phosphonate derivatives of carbocyclic glycinamide ribonucleotide with V/K values, relative to that obtained for beta-glycinamide ribonucleotide, of 1, 27, 1.4, and 2.9%, respectively. Several other analogs of carbocyclic glycinamide ribonucleotide, namely a truncated phosphonate and 2',3'-dideoxy- and 2',3'-dideoxy-2',3'-didehydro-carbocyclic glycinamide ribonucleotide, were inhibitors of the enzyme, competitive against glycinamide ribonucleotide, with Ki values approximately 100 times higher than the Km for -glycinamide ribonucleotide. Although the results of the present study parallel those obtained previously with the avian enzyme (V. D. Antle, D. Liu, B. R. McKellar, C. A. Caperelli, M. Hua, and R. Vince (1996) J. Biol. Chem. 271, 6045-6049), quantitative differences between the two enzyme species have been uncovered.  相似文献   

12.
Soybean nodule cDNA clones encoding glycinamide ribonucleotide (GAR) synthetase (GMpurD) and GAR transformylase (GMpurN) were isolated by complementation of corresponding Escherichia coli mutants. GAR synthetase and GAR transformylase catalyse the second and the third steps in the de novo purine biosynthesis pathway, respectively. One class of GAR synthetase and three classes of GAR transformylase cDNA clones were identified. Northern blot analysis clearly shows that these purine biosynthetic genes are highly expressed in young and mature nodules but weakly expressed in roots and leaves. Expression levels of GMpurD and GMpurN mRNAs were not enhanced when ammonia was provided to non-nodulated roots.  相似文献   

13.
Sucrose and Percoll density gradient centrifugation were used to separate organelles from the central zone tissue of cowpea (Vigna unguiculata L. Walp. cv Vita 3: Bradyrhizobium strain CB 756) nodules. Enzyme activity analysis has shown that both plastids and mitochondria have a full complement of enzymes for de novo purine synthesis. In vitro activities of individual component enzymes (glycinamide ribonucleotide synthetase, EC 6.3.4.13; glycinamide ribonucleotide transformylase, EC 2.1.2.2; aminoimidazole ribonucleotide synthetase, EC 6.3.3.1; aminoimidazole carboxamide ribonucleotide transformylase, EC 6.3.2.6; and adenylosuccinate-AMP lyase, EC 4.3.2.2) as well as of the whole purine pathway (from ribose-5-phosphate to inosine monophosphate) were similar in the two organelles. No significant cytosolic or bacteroidal activity of any of the purine pathway enzymes was detected on assay. These findings are contrary to earlier studies (M.J. Boland, K.R. Schubert [1983] Arch Biochem Biophys 220: 179-187; B.J. Shelp C.A. Atkins, P.J. Storer, D.T. Canvin [1983] Arch Biochem Biophys 224: 429-441) that concluded that enhanced expression of purine synthesis in nodules of ureide-forming species is localized to plastids. Significantly increased recovery of activity of key pathway enzymes (particularly of labile aminoimidazole ribonucleotide synthetase) coupled with improved assay methods and the use of Percoll in addition to sucrose for gradient centrifugation have together contributed to much higher reaction rates and more definitive analyses of particulate fractions.  相似文献   

14.
15.
The carbocyclic analog of glycinamide ribonucleotide has been synthesized from the racemic parent trihydroxy cyclopentyl amine (B.L. Kam and N.J. Oppenheimer (1981) J. Org. Chem. 46, 3268-3272). This analog was accepted as a substrate (Km = 18 microM, Vmax = 0.23 mM/min) by mammalian glycinamide ribonucleotide transformylase (EC 2.1.2.2) with an efficiency comparable to that of the natural substrate glycinamide ribonucleotide (Km = 10 microM, Vmax = 0.27 mM/min). For each molecule of 10-formyl-5,8-dideazafolate cosubstrate consumed, 0.92 molecule of N-formyl carbocyclic glycinamide ribonucleotide was produced in the enzymatic reaction, indicating a 1:1 stoichiometry. These studies afford the first alternate nucleotide substrate for glycinamide ribonucleotide transformylase and suggest that the ribose ring oxygen of glycinamide ribonucleotide is not critical for enzyme recognition and binding.  相似文献   

16.
The purD gene of Escherichia coli encoding the enzyme glycinamide ribonucleotide (GAR) synthetase, which catalyzes the conversion of phosphoribosylamine (PRA), glycine, and MgATP to glycinamide ribonucleotide, MgADP, and Pi, has been cloned and sequenced. The protein, as deduced by the structural gene sequence, contains 430 amino acids and has a calculated Mr of 45,945. Construction of an overproducing strain behind a lambda pL promoter allowed a 4-fold purification of the protein to homogeneity. N-Terminal sequence analysis and comparison of the sequence with those of other GAR synthetases confirm the amino acid sequence deduced from the gene sequence. Initial velocity studies and product and dead-end inhibition studies are most consistent with a sequential ordered mechanism of substrate binding and product release in which PRA binds first followed by MgATP and then glycine; Pi leaves first, followed by loss of MgADP and finally GAR. Incubation of [18O]glycine, ATP, and PRA results in quantitative transfer of the 18O to Pi. GAR synthetase is very specific for its substrate glycine.  相似文献   

17.
5-Aminoimidazole ribonucleotide (AIR) synthetase, glycinamide ribonucleotide (GAR) synthetase, and GAR transformylase activities from chicken liver exist on a single polypeptide of Mr 110,000 [Daubner, C. S., Schrimsher, J. L., Schendel, F. J., Young, M., Henikoff, S., Patterson, D., Stubbe, J., & Benkovic, S. J. (1985) Biochemistry 24, 7059-7062]. Details of copurification of these three activities through four chromatographic steps are reported. The ratios of these activities remain constant throughout the purification. AIR synthetase has an absolute requirement for K+ for activity and under these conditions has apparent molecular weights of 330,000, determined by Sephadex G-200 chromatography, and 133,000, determined by sucrose density gradient ultracentrifugation. Incubation of 18O-labeled formylglycinamidine ribonucleotide (FGAM) with AIR synthetase results in stoichiometric production of AIR, ADP, and [18O]Pi. NMR spectra of beta-FGAM and beta-AIR are reported.  相似文献   

18.
Human purine de novo synthesis pathway contains several multi-functional enzymes, one of which, tri-functional GART, contains three enzymatic activities in a single polypeptide chain. We have solved structures of two domains bearing separate catalytic functions: glycinamide ribonucleotide synthetase and aminoimidazole ribonucleotide synthetase. Structures are compared with those of homologous enzymes from prokaryotes and analyzed in terms of the catalytic mechanism. We also report small angle X-ray scattering models for the full-length protein. These models are consistent with the enzyme forming a dimer through the middle domain. The protein has an approximate seesaw geometry where terminal enzyme units display high mobility owing to flexible linker segments. This resilient seesaw shape may facilitate internal substrate/product transfer or forwarding to other enzymes in the pathway.  相似文献   

19.
R G Hards  D Patterson 《Enzyme》1986,35(3):117-126
An intact cell assay system based on Tween 80 permeabilization was used to investigate glycinamide ribonucleotide (GAR) synthetase activity in human fibroblasts and Chinese hamster ovary cells. Optimal conditions for the assay of the enzyme were determined with regards to ATP, MgCl2, NH4Cl and ribose-5'-phosphate concentrations as well as pH. Using the optimal assay conditions, the Vmax values as determined by Lineweaver-Burke double reciprocal plots were found to be 5.19 nmol GAR formed/5 X 10(5) cells/30 min for the fibroblasts and 13.4 nmol GAR formed/5 X 10(5) cells/30 min for the Chinese hamster ovary cells.  相似文献   

20.
The human Chromosome (Chr) 21q22.1 region contains several genes for cytokines and neurotransmitters and the gene for superoxide dismutase (mutant forms of which can cause familial amyotrophic lateral sclerosis). A region of approximately 5.8 Mb encompassing D21S82 and the glycinamide ribonucleotide transformylase (GART) loci was covered by overlapping YAC clones, which were contiguously ordered by clone walking with sequence-tagged site (STSs). A total of 76 markers, including 29 YAC end-specific STSs, were unambiguously ordered in this 5.8-Mb region, and the average interval between markers was 76 kb. Restriction maps of the YAC clones with rare-cutting enzymes were simultaneously prepared, and the restriction sites were aligned to obtain a consensus restriction map of the proximal region of the 21q22.1 band. The restriction map made from 44 overlapping YACs contains 54 physically assigned STSs. By integrating the consensus map of the adjacent 1.8-Mb region, we obtained a fine physical map spanning 6.5 Mb of human Chr 21q22.1. This map contains 24 precisely positioned end-specific STSs and 12 NotI-linking markers. More than 39 potential CpG islands were identified in this region and were found to be unevenly distributed. This physical map and the YACs should be useful as a reference map and as a resource for further structural analysis of the Giemsa-negative band (R-band) of Chr 21q22.1. Received: 1 September 1995 / Accepted: 21 November 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号