首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The amino acid sequences of mutationally altered ribosomal protein L7/L12 from four different rplL mutants of Escherichia coli were determined and correlated with some features of the mutant ribosomes. Two of the rplL mutations are deletions around position 40, which give rise to a shortened hinge region between the two domains of L7/L12. The other two mutants harbor point mutations at position 74 (Gly----Asp) or at position 82 (Glu----Lys), which are in or close to an evolutionarily conserved sequence in the C-terminal domain. The two latter mutations are associated with decreased rates of growth and translational elongation. All four mutants show increased nonsense codon read-through in vivo. Ribosomes from one of the deletion mutants show clearly increased missense error rates in vitro.  相似文献   

2.
Mutant forms of elongation factor Tu encoded by tufA8 and tufB103 in Salmonella typhimurium cause suppression of some but not all frameshift mutations. All of the suppressed mutations in S. typhimurium have frameshift windows ending in the termination codon UGA. Because both tufA8 and tufB103 are moderately efficient UGA suppressors, we asked whether the efficiency of frameshifting is influenced by the level of misreading at UGA. We introduced plasmids synthesizing either one of the release factors into strains in which the tuf mutations suppress a test frameshift mutation. We found that overproduction of release factor 2 (which catalyzes release at UGA and UAA) reduced frameshifting promoted by the tuf mutations at all sites tested. However, at one of these sites, trpE91, overproduction of release factor 1 also reduced suppression. The spontaneous level of frameshift "leakiness" at three sites in trpE, each terminating in UGA, was reduced in strains carrying the release factor 2 plasmid. We conclude that both spontaneous and suppressor-enhanced reading-frame shifts are influenced by the activity of peptide chain release factors. However, the data suggest that the effect of release factor on frameshifting does not necessarily depend on the presence of the normal triplet termination signal.  相似文献   

3.
Codon recognition by aminoacyl-tRNA on the ribosome triggers a process leading to GTP hydrolysis by elongation factor Tu (EF-Tu) and release of aminoacyl-tRNA into the A site of the ribosome. The nature of this signal is largely unknown. Here, we present genetic evidence that a specific set of direct interactions between ribosomal protein S12 and aminoacyl-tRNA, together with contacts between S12 and 16S rRNA, provide a pathway for the signaling of codon recognition to EF-Tu. Three novel amino acid substitutions, H76R, R37C, and K53E in Thermus thermophilus ribosomal protein S12, confer resistance to streptomycin. The streptomycin-resistance phenotypes of H76R, R37C, and K53E are all abolished by the mutation A375T in EF-Tu. A375T confers resistance to kirromycin, an antibiotic freezing EF-Tu in a GTPase activated state. H76 contacts aminoacyl-tRNA in ternary complex with EF-Tu and GTP, while R37 and K53 are involved in the conformational transition of the 30S subunit occurring upon codon recognition. We propose that codon recognition and domain closure of the 30S subunit are signaled through aminoacyl-tRNA to EF-Tu via these S12 residues.  相似文献   

4.
5.
6.
D Hughes  J F Atkins    S Thompson 《The EMBO journal》1987,6(13):4235-4239
This is the first report of ribosomal frameshifting promoted by mutants of the elongation factor Tu (EF-Tu). EF-Tu mutants can suppress both -1 and +1 frameshift mutations. The level of nonsense readthrough is also increased at some UGA (this paper) and UAG (Hughes, 1987) sites by these mutants. Suppression occurs when a mutant tuf allele is paired with a wild-type copy of the other tuf gene but is most efficient when both tuf genes are mutant. Frameshifting mediated by the tuf alleles studied, tufA8 and tufB103, is not general; indeed most frameshift mutations are not suppressed. Several possible mechanisms by which mutant EF-Tu may cause frameshifting are discussed.  相似文献   

7.
Summary The E. coli chromosome contains two genes for elongation factor Tu, tufA (near the fusidic acid resistance marker) and tufB (near the rifampicin resistance marker). It has been discovered that the mutant E. coli K12 strain HAK88 bears a mutation in the tufB gene, which leads to the synthesis of a protein of increased acidity. To determine whether the mutation has altered the protein's function in peptide chain elongation, we have compared the reactivities of normal tufA EF-Tu and mutant tufB EF-Tu (purified together from HAK88) with the components of the AA-tRNA binding cycle. Normal tufA EF-Tu and mutant tufB EF-Tu are indistinguishable in their affinities for GDP, EF-Ts, and phe-tRNA, and differ only slightly in their affinities for ribosomes. Coupled with the results of a separate study showing the similarity of the normal tufA and tufB gene products, these experiments demonstrate that the mutation has not altered the function of tufB EF-Tu in peptide chain elongation. Contrary to the original report (Kuwano et al., 1974; J. Mol. Biol. 86, 689–698) the HAK88 strains we have examined no longer possess a temperature-sensitive EF-Ts. The growth rates of HAK88 strains resemble the parent HAK8 strain in their lack of tRNA dependence but unlike HAK8 show varying degrees of temperature sensitivity. We conclude that HAK88 contains a physically altered but functionally intact tufB EF-Tu. The mutation in tufB should be valuable for studying in vivo the control of expression of the genes for EF-Tu.  相似文献   

8.
The relative levels of ribosomes, ribosomal protein S1, and elongation factor G in the growth cycle of Escherichia coli were examined with two-dimensional polyacrylamide gel electrophoresis. Nonequilibrium pH gradient polyacrylamide gel electrophoresis was used in the first dimension, and polyacrylamide gradient-sodium dodecyl sulfate gel electrophoresis was used in the second dimension. The identities of protein spots containing S1 and elongation factor G were confirmed by radioiodination of the proteins and peptide mapping of the radiolabeled peptides. The levels of ribosomes and ribosomal protein S1 were coordinately reduced during transition from exponential phase to stationary phase. There was no accumulation of S1 in the stationary phase. In marked contrast, the level of elongation factor G showed no significant change from exponential phase to stationary phase. The relative level of elongation factor G compared with ribosomes or S1 increased by about 2.5-fold during transition from exponential phase to stationary phase. The results show that there are differences between the regulation of the levels of elongation factor G and of ribosomal proteins, including S1, apparent during the transition from exponential to stationary phase.  相似文献   

9.
Summary The str operon of Escherichia coli contains genes for ribosomal proteins S12 and S7 and for elongation factors EF-G and EF-Tu (Jaskunas et al. 1975). We have subcloned various segments of DNA from this operon onto multicopy plasmids. We found that cells carrying a recombinant plasmid which lacks the major promoter for the str operon but contains the 5 portion of the EF-Tu gene synthesize a novel protein which we have identified as a truncated EF-Tu molecule. Moreover, cells carrying plasmids with an intact EF-Tu gene synthesize the elongation factor at a 3-to 5-fold higher rate than haploid cells. Thus the EF-Tu gene can be expressed in the absence of the major promoter for the str operon. This expression is not due to read-through from plasmid promoters, but it is dependent on the presence of the distal portion of the EF-G gene on the plasmids. These results indicate that there is a secondary promoter for EF-Tu expression, apparently located within the structural gene for elongation factor EF-G.  相似文献   

10.
N-terminal acetylation is widespread in the eukaryotic proteome but in bacteria is restricted to a small number of proteins mainly involved in translation. It was long known that elongation factor Tu (EF-Tu) is N-terminally acetylated, whereas the enzyme responsible for this process was unclear. Here, we report that RimI acetyltransferase, known to modify ribosomal protein S18, is likewise responsible for N-acetylation of the EF-Tu. With the help of inducible tufA expression plasmid, we demonstrated that the acetylation does not alter the stability of EF-Tu. Binding of aminoacyl tRNA to the recombinant EF-Tu in vitro was found to be unaffected by the acetylation. At the same time, with the help of fast kinetics methods, we demonstrate that an acetylated variant of EF-Tu more efficiently accelerates A-site occupation by aminoacyl-tRNA, thus increasing the efficiency of in vitro translation. Finally, we show that a strain devoid of RimI has a reduced growth rate, expanded to an evolutionary timescale, and might potentially promote conservation of the acetylation mechanism of S18 and EF-Tu. This study increased our understanding of the modification of bacterial translation apparatus.  相似文献   

11.
Translation initiation region (TIR) of the rpsA mRNA encoding ribosomal protein S1 is one of the most efficient in Escherichia coli despite the absence of a canonical Shine-Dalgarno-element. Its high efficiency is under strong negative autogenous control, a puzzling phenomenon as S1 has no strict sequence specificity. To define sequence and structural elements responsible for translational efficiency and autoregulation of the rpsA mRNA, a series of rpsA'-'lacZ chromosomal fusions bearing various mutations in the rpsA TIR was created and tested for beta-galactosidase activity in the absence and presence of excess S1. These in vivo results, as well as data obtained by in vitro techniques and phylogenetic comparison, allow us to propose a model for the structural and functional organization of the rpsA TIR specific for proteobacteria related to E.coli. According to the model, the high efficiency of translation initiation is provided by a specific fold of the rpsA leader forming a non-contiguous ribosome entry site, which is destroyed upon binding of free S1 when it acts as an autogenous repressor.  相似文献   

12.
Ribosomal protein L7/12 is crucial for the function of elongation factor G (EF-G) on the ribosome. Here, we report the localization of a site in the C-terminal domain (CTD) of L7/12 that is critical for the interaction with EF-G. Single conserved surface amino acids were replaced in the CTD of L7/12. Whereas mutations in helices 5 and 6 had no effect, replacements of V66, I69, K70, and R73 in helix 4 increased the Michaelis constant (KM) of EF-G.GTP for the ribosome, suggesting an involvement of these residues in EF-G binding. The mutations did not appreciably affect rapid single-round GTP hydrolysis and had no effect on tRNA translocation on the ribosome. In contrast, the release of inorganic phosphate (Pi) from ribosome-bound EF-G.GDP.Pi was strongly inhibited and became rate-limiting for the turnover of EF-G. The control of Pi release by interactions between EF-G and L7/12 appears to be important for maintaining the conformational coupling between EF-G and the ribosome for translocation and for timing the dissociation of the factor from the ribosome.  相似文献   

13.
J Nishimura  T F Deuel 《FEBS letters》1983,156(1):130-134
The human platelet derived-growth factor (PDGF) is both a potent mitogen and a strong chemoattractant protein for cells involved in inflammation and repair. In seeking mechanisms by which PDGF might initiate specific activities in target cells, it was found that highly purified PDGF stimulates the phosphorylation of an Mr approximately 33000 protein in confluent Swiss mouse 3T3 cells [Biochem. Biophys. Res. Commun. (1981) 103, 355-361]. The Mr approximately 33000 protein has now been recovered in polysomes by differential centrifugation and identified as ribosomal protein S6 by two-dimensional polyacrylamide gel electrophoresis.  相似文献   

14.
Strains containing a series of restrictive and non-restrictive mutations in ribosomal protein S12 have been transformed with plasmids carrying the rrnB operon with mutations at positions 1409 and 1491 in 16S rRNA. The effects of the double-mutant constructs have been measured by growth rate, paromomycin and streptomycin sensitivity, resistance and dependence. The results demonstrate a functional interaction between the 1409-1491 region of rRNA and ribosomal protein S12.  相似文献   

15.
The structural gene for elongation factor EF-TS (tsf) and that for ribosomal protein S2 (rpsB) have been identified in E. coli. Both genes are carried by λ transducing phages that have been isolated as dapD?polC+ transducing phages. Synthesis of both S2 and EF-Ts was demonstrated in ultraviolet light-irradiated E. coli cells infected with these phages. Experiments were also done using other transducing phages that carry dapD+ but not polC+. The data indicate that both the tsf and rpsB genes map near dapD at about 4 min on the E. coli genetic map. This location is different from the two chromosomal locations, the str-spc region and the rif region, where many ribosomal protein genes, the genes for RNA polymerase components, as well as other elongation factor genes (fus, tufA, and tufB) are located.  相似文献   

16.
The fidelity of protein synthesis depends on the rate constants for the reaction of ribosomes with ternary complexes of elongation factor Tu (EF-Tu), GTP, and aminoacyl (aa)-tRNA. By measuring the rate constants for the reaction of poly(U)-programmed ribosomes with a binary complex of elongation factor (EF-Tu) and GTP we have shown that two of the key rate constants in the former reaction are determined exclusively by ribosome-EF-Tu interactions and are not affected by the aa-tRNA. These are the rate constant for GTP hydrolysis, which plays an important role in the fidelity of ternary complex selection by the ribosome, and the rate constant for EF-Tu.GDP dissociation from the ribosome, which plays an equally important role in subsequent proofreading of the aa-tRNA. We conclude that the fidelities of ternary complex selection and proofreading are fundamentally dependent on ribosome-EF-Tu interactions. These interactions determine the absolute value of the rate constants for GTP hydrolysis and EF-Tu.GDP dissociation. The ribosome then uses these rate constants as internal standards to measure, respectively, the rate constants for ternary complex and aa-tRNA dissociation from the ribosome. These rates, in turn, are highly dependent on whether the ternary complex and aa-tRNA are cognate or near-cognate to the codon being translated.  相似文献   

17.
The amounts of the polypeptide chain elongation factors Tu, Ts, and G, and ribosomal protein SI were assessed under various growth conditions using three independent procedures: (a) Immunoprecipitation and gel electrophoresis, (b) radioimmune assay, and (c) activity measurements. It was demonstrated that, during balanced growth of E. coli, the intracellular levels of these proteins increased in proportion to the growth rate, and the ratio of EF-Tu:EF-Ts:EF-G:protein SI was 4-5:1:1:1, at all growth rates. The effects of isoleucine starvation on the rates of synthesis of these proteins were examined using a pair of isogenic stringent and relaxed strains. The syntheses of all these proteins were found to be under the influence of stringent control. These results indicate that in E. coli the syntheses of the above four proteins are regulated in a coordinated manner and are subject to stringent control.  相似文献   

18.
The exchange of elongation factor Tu (EF-Tu)-bound GTP in the presence and absence of elongation factor Ts (EF-Ts) was monitored by equilibrium exchange kinetic procedures. The kinetics of the exchange reaction were found to be consistent with the formation of a ternary complex EF-Tu X GTP X EF-Ts. The equilibrium association constants of EF-Ts to the EF-Tu X GTP complex and of GTP to EF-Tu X EF-Ts were calculated to be 7 X 10(7) and 2 X 10(6) M-1, respectively. The dissociation rate constant of GTP from the ternary complex was found to be 13 s-1. This is 500 times larger than the GTP dissociation rate constant from the EF-Tu X GTP complex (2.5 X 10(-2) s-1). A procedure based on the observation that EF-Tu X GTP protects the aminoacyl-tRNA molecule from phosphodiesterase I-catalyzed hydrolysis was used to study the interactions of EF-Tu X GTP with Val-tRNAVal and Phe-tRNAPhe. Binding constants of Phe-tRNAPhe and Val-tRNAVal to EF-Tu X GTP of 4.8 X 10(7) and 1.2 X 10(7)M-1, respectively, were obtained. The exchange of bound GDP with GTP in solution in the presence of EF-Ts was also examined. The kinetics of the reaction were found to be consistent with a rapid equilibrium mechanism. It was observed that the exchange of bound GDP with free GTP in the presence of a large excess of the latter was accelerated by the addition of aminoacyl-tRNA. On the basis of these observations, a complete mechanism to explain the interactions among EF-Tu, EF-Ts, guanine nucleotides, and aminoacyl-tRNA has been developed.  相似文献   

19.
Bacteriophage T7 expresses a serine/threonine-specific protein kinase activity during Infection of Its host, Escherichia coli. The protein kinase (gpO.7 PK), encoded by the T7 early gene 0.7, enhances phage reproduction under sub-optimal growth conditions. It was previously shown that ribosomal protein S1 and translation initiation factors IF1, IF2, and IF3 are phosphoryiated in T7-infected cells, and it was suggested that phosphorylation of these proteins may serve to stimulate translation of the phage late mRNAs. Using high-resolution two-dimensional gel electrophoresis and specific immunoprecipitation, we show that elongation factor G and ribosomal protein S6 are phosphorylated following T7 infection. The gel electro-phoretic data moreover indicate that elongation factor P is phosphorylated in T7-infected cells. T7 early and late mRNAs are processed by ribonuclease III, whose activity is stimulated through phosphorylation by gp0.7 PK. Specific overexpression and phosphorylation was used to locate the RNase III polypeptide in the standard two-dimensional gel pattern, and to confirm that serine is the phosphate-accepting amino acid. The two-dimensional gels show that the in vivo expression of gp0.7 PK results in the phosphorylation of over 90 proteins, which Is a significantly higher number than previous estimates. The protein kinase activities of the T7-related phages T3 and BA14 produce essentially the same pattern of phosphorylated proteins as that of T7. Finally, several experimental variables are analysed which influence the production and pattern of phosphorylated proteins in both uninfected and T7-rnfected cells.  相似文献   

20.
This work analyzes the action of enacyloxin Ila, an inhibitor of bacterial protein biosynthesis. Enacyloxin IIa [IC50 on poly(Phe) synthesis approximately 70 nM] is shown to affect the interaction between elongation factor (EF) Tu and GTP or GDP; in particular, the dissociation of EF-Tu-GTP is strongly retarded, causing the Kd of EF- Tu-GTP to decrease from 500 to 0.7 nM. In its presence, the migration velocity of both GTP- and GDP-bound EF-Tu on native PAGE is increased. The stimulation of EF-Tu-GDP dissociation by EF-Ts is inhibited. EF- Tu-GTP can still form a stable complex with aminoacyl-tRNA (aa-tRNA), but it no longer protects aa-tRNA against spontaneous deacylation, showing that the EF-Tu-GTP orientation with respect to the 3' end of aa-tRNA is modified. However, the EF-Tu-dependent binding of aa-tRNA to the ribosomal A-site is impaired only slightly by the antibiotic and the activity of the peptidyl-transferase center, as determined by puromycin reactivity, is not affected. In contrast, the C-terminal incorporation of Phe into poly(Phe)-tRNA bound to the P-site is inhibited, an effect that is observed if Phe-tRNA is bound to the A-site nonenzymatically as well. Thus, enacyloxin IIa can affect both EF-Tu and the ribosomal A-site directly, inducing an anomalous positioning of aa-tRNA, that inhibits the incorporation of the amino acid into the polypeptide chain. Therefore, it is the first antibiotic found to have a dual specificity targeted to EF-Tu and the ribosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号