首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microgravity can influence cell growth and function. A transfected Sp2/0 myeloma cell line P3A2 producing a human IgG1 anti-TNF monoclonal antibody was cultivated in static culture, spinner flasks and simulated microgravity using a rotating wall vessel bioreactor. Microgravity significantly decreased cell growth (from 1.7×106 to 7.9×105 cells/ml), but facilitated the synthesis of antibodies, (1.8, 1.3 and 0.5 g of anti-TNF hmAb per 106 viable cells for cells cultivated under microgravity, in spinner flasks and static cultures, respectively). The results suggest that microgravity could be applied to improve the specific productivity of cell lines producing potentially important therapeutic proteins.  相似文献   

2.
正常细胞转化成癌细胞后,其表型发生了一系列不同于正常细胞的变化,成为肿瘤细胞的标志。Gold和Freeman(1965)用人结肠癌组织的抽提物免疫兔,发现有些用人正常结肠组织吸收后的抗血清能够与肿瘤组织和胚胎肠道抽提物起反应,但不与正常组织抽提物起反应,由于这种抗原最初被发现在胚胎组织,故名为癌胚抗原(embryonic carcinoma antigen,简称CEA)。用敏感的放射免疫或免疫酶标方  相似文献   

3.
The influence of centrifugal force on the growth of cells was examined by exposing the cells of the mouse-human hybridoma X87 line to centrifugal force (100–500 G) for ten minutes twice a day and comparing the static culture with that of unexposed cells. In this experiment, both cell proliferation and specific antibody productivity were independent of the centrifugal effect, and gave the same results as in the case of no exposure to centrifugal force. High density cultivation of the mouse-human hybridoma X87 line was obtained by a perfusion system where the cells were separated from the culture medium by continuous centrifugation. In the serum-free culture, the maximum viable cell density exceeded 107 cells/ml, and monoclonal antibody was stably produced for 37 days. The results in this culture were equivalent to those obtained by intermittent centrifugal cell separation from the culture medium, and separation by gravitational settlement.  相似文献   

4.
Nanometer-scale architectures assembled on cell surface receptors from smaller macromolecular constituents generated a large amplification of fluorescence. A targeted dendrimer was synthesized from a cystamine-core G4 PAMAM dendrimer, and contained an anti-BrE3 monoclonal antibody as the targeting group, several fluorophores and an average of 12 aldehyde moieties as complementary bio-orthogonal reactive sites for the covalent assembly. A cargo dendrimer, derived from a PAMAM G4 dendrimer, contained several fluorophores as the cargo for delivery and five hydrazine moieties as complimentary bio-orthogonal reactive sites. The system is designed to be flexible and allow for facile incorporation of a variety of targeting ligands.  相似文献   

5.
The monoclonal antibody MOv19 directed to a folate binding protein shows temperature-dependent potentiation of binding of the noncompeting monoclonal antibody MOv18 to the relevant antigen, but the mechanism involved in this phinomenon had remained unclear. Use of chimeric versions of both monoclonal antibodies and the F(ab′)2 and fan fragments of MOv19 revealed an increment in MOv18 binding in all combinations irrespective of the orgin of the Fc portin of the monoclonal antibody. The potentiating effect of bivalent MOv19 fragments on 125l-MOv18 binding was similar to that of the entire monoclonal antibody and occurred at saturating concentrations of both reagents at which monovalent binding prevails. Similarly, the monovalent fragment also induced a significant increase in MOv18 bunding. Howener, the potentiation sccurred only at very high concentrations of antibody fragment. Homologous inhibition was drastically reduced using MOv19 Fab fragment, suggesting a low binding stability of the monovalent reagent. Immunoblotting analysis and binding in the presence of exogenous purified folate binding protein indicated a cross-linking between soluble and cell surface molecules mediated by the bivalent monoclonal antibodies. The extentof the increase in MOv18 binging at O°C with high amounts of exogenous folate binding protein was lower than that obtained at 370C in the absence of added molecule. Release of 125l-MOv18 from the cell surface was significantly higher in the absence of MOv19 than in its presence. Affinity constant values of 125l-MOv18 binding evaluated in the presence of MOv19 or control monoclonal antibody MINT5 were comparable, whereas the number of binding sites per cell detected by 125l-MOv18 was significantly higher in the presence of MOv19 than MINT5. Together, the data suggest that monoclonal antibody MOv19 induces a conformational change of the molecule it binds that increases the number of antigenic sites anvailable for MOv18 binding and, in turn, the binding stability of the latter, MOv19 bivalency also contributes to the MOv18 binding increment by cross-linking released and cell surface–anchored folate binding protein molecules. © Wiley-Liss, Inc.  相似文献   

6.
Summary This report describes the results of the comparison of three different methods and three monoclonal antibodies to stain cells in suspension for incorporated bromodeoxyuridine and total DNA content. The procedures were tested in three different experimental tumour cell lines. The sensitivity of the different procedures was expressed as the ratio of the anti-BrdUrd fluorescence intensities of the S and G1 phase cells (FS/FG1 ratio). There were remarkable differences in sensitivity between the different procedures. With the heat denaturation the most favourable FS/FG1 ratio's were obtained but substantial cell loss occurred during this procedure which is a disadvantage for clinical application. With the pepsin digestion + acid denaturation procedure cell loss was negligible. The standard acid denaturation procedure was inferior to the other two methods. Using the pepsin digestion + acid denaturation procedure we examined the variations in sensitivity for the different monoclonal antibodies and cell lines and the influence of BrdUrd concentration, labelingtime and cell concentration. The binding characteristics for the various antibodies differed considerably in our hands. Only with the IU4 antibody we obtained FS/FG1 ratio's comparable with those desenbed in the literature. No difference was observed between the cell lines. Variation in cell concentration between 1 × 104 to 1 × 106 ml nor BrdUrd concentration appeared to influence the sensitivity of the procedure. A labelingtime of 1 h or even 30 min seems to be more than sufficient for an optimal FS/FG1 ratio.Our results indicate that using the appropriate antibody and immunofluorescence BrdUrd can be detected by flow cytometry, after incorporation into the DNA of tumour cells under a wide range of culture conditions.For clinical application, the pepsin digestion + acid dena uration method in combination with IU4 antibody seems to be the procedure of choice due to its good reproducibility, sensitivity and its low cell loss.  相似文献   

7.
开发抗CD44抗体治疗急性髓系白血病   总被引:2,自引:0,他引:2  
为了探讨抗CD44 抗体对急性髓系白血病(AML)细胞增殖和分化的影响,为肿瘤靶向药物的开发提供前提和基础.应用流式细胞术检测抗CD44单克隆抗体HI313的亲和力,MTS检测HI313是否抑制NB4细胞生长,并检测细胞周期的变化,与初筛AML病人标本共培养检测其促分化作用.结果显示HI313抑制NB4细胞生长,能使细胞周期停留在 G0/G1期,并能有效诱导AML病人血细胞的分化.通过以上实验证明抗CD44抗体HI313对NB4细胞具有增殖抑制作用,作用机制可能与阻滞细胞周期于G0/G1期相关, 并对AML病人的细胞有一定的促分化作用,提示此抗体具有针对AML进行靶向治疗的潜力,为HI313人抗体的进一步基因工程改造及临床应用奠定了基础.  相似文献   

8.
A systematic analytical approach combining tryptic and chymotryptic peptide mapping with a Mascot Error Tolerant Search (ETS) has been developed to detect and identify low level protein sequence variants, i.e., amino acid substitutions, in recombinant monoclonal antibodies. The reversed-phase HPLC separation with ultraviolet (UV) detection and mass spectral acquisition parameters of the peptide mapping methods were optimized by using a series of model samples that contained low levels (0.5–5.0%) of recombinant humanized anti-HER2 antibody (rhumAb HER2) along with another unrelated recombinant humanized monoclonal antibody (rhumAb A). This systematic approach’s application in protein sequence variant analysis depends upon time and sensitivity constraints. An example of using this approach as a rapid screening assay is described in the first case study. For stable CHO clone selection for an early stage antibody project, comparison of peptide map UV profiles from the top four clone-derived rhumAb B samples quickly detected two sequence variants (M83R at 5% and P274Tat 42% protein levels) from two clones among the four. The second case study described in this work demonstrates how this approach can be applied to late stage antibody projects. A sequence variant, L413Q, present at 0.3% relative to the expected sequence of rhumAb C was identified by a Mascot-ETS for one out of four top producers. The incorporation of this systematic sequence variant analysis into clone selection and the peptide mapping procedure described herein have practical applications for the biotechnology industry, including possible detection of polymorphisms in endogenous proteins.Key words: recombinant monoclonal antibody, cell line development, sequence variants, HPLC-UV/MS/MS, tryptic peptide mapping, Mascot error tolerant search  相似文献   

9.
Effect of temperature on hybridoma cell cycle and MAb production   总被引:3,自引:0,他引:3  
The kinetics of growth and antibody formation of an anti-interleukin-2 producing hybridoma line were studied in suspension culture at temperatures ranging from 34 degrees C to 39 degrees C. Flow cytometry was used to determine the effect of temperature on the cell cycle. Maximum cell density and monoclonal antibody yield were observed at 37 degrees C. The specific monoclonal antibody production rate was approximately constant throughout each batch experiment. Lower temperatures caused cells to stay longer in the G(1)-phase of the cell cycle, but temperature had only a marginal effect on the specific antibody production rate. Arresting of cells in the G(1)-phase by means of temperature was, therefore, not suited for enhanced monoclonal antibody production. Rather, antibody production for this hybridoma was directly linked to viable cell concentration. (c) 1992 John Wiley & Sons, Inc.  相似文献   

10.
Single-cell rates of accumulation of cellular protein have been determined as a function of total protein content using flow cytometry and population balance equations for exponentially growing murine hybridoma cells in the individual G(1), S(1) and G(2) + M cell cycle phases. A novel flow cytometric technique for the identification of hybridoma cells in mitosis was developed and implemented. The data were obtained from a producer cell line which synthesizes and secretes high levels of monoclonal antibodies, and from a nonproducer clone which does not synthesize and secrete substantial amounts of antibody. The results indicate that the kinetics of single-cell protein accumulation in these two cell lines are considerably different. In particular, low protein content G(1) phase producer cells were characterized by a rate of protein accumulation which was approximately five times higher than the mean rate observed for higher protein content producer cells cycle phase. In contrast, the rate of accumulation of protein increased continuously with totalprotein content for the G(1) phase nonproducer cells. S phase hybridoma cells were characterized by a considerably lower rate of protein accumulation which did not vary much with protein content for either cell line. Finally, G(2) + M phase producer cells demonstrated a negative rate of protein accumulation which indicates that the rates of protein synthesis. It was hypothesized that these differences in total protein accumulation are caused by differences in monoclonal antibody accumulation. The distribution of rates suggests the need for a segregated approach to the modeling of the kinetics of antibody production in hybridomas.  相似文献   

11.
A cell line named PVRSV1D11 secreting monoclonal antibody (McAb) against the prokaryotically expressed coat protein (CP) of Prunus necrotic ringspot virus (PNRSV) was developed using hybridoma technology including animal immunization, cell fusion, cell line culture and enzyme‐linked immunosorbent assay (ELISA)‐based for screening. The specificity, titre and detection sensitivity of the McAb were determined by indirect ELISA to establish optimal conditions. The antibody reacted strongly with PNRSV and showed no cross‐reactions with the proteins of Plum pox virus, Prunus dwarf virus, Apple stem pitting virus, Apple stem grooving virus, Apple mosaic virus or Apple chlorotic leafspot virus. The ascites developed with PNRSV1D11 cell line showed high absorbance until it was diluted to over 6.6 × 107 fold. The McAb belonged to IgG2a isotype and was diluted by 1.28 × 105 folds as an optimal detection concentration. The detection sensitivity of the monoclonal antibody was 11.7 ng/ml protein of PNRSV. The results indicated that the McAb against the CP of PNRSV is suitable for PNRSV detection in the plants and for monitoring the dynamics of the virus by using indirect ELISA.  相似文献   

12.
The hybridoma cell line KM50 originally produces a monoclonal antibody at a concentration of ∼40 mg ml-1 in ascites. To investigate the possibility to apply this expression system to the production of useful proteins, the cDNA encoding human granulocyte colony-stimulating factor was inserted by homologous recombination into just downstream of the promoter of the active immunoglobulin heavy chain gene of KM50. Site directed integration of targeting DNAs resulted in the disruption of expression of the immunoglobulin heavy chain proteins with a frequency of 1 in 10 ∼ 100 G418-resistance transfectants. One of the monoclonal antibody-deficient transfectants produced25 ng ml-1 of granulocyte colony-stimulating factor in the supernatant of its cell culture the number of molecules of which corresponds to that of the monoclonal antibody originally produced by KM50. However, when this transfectant was injected intraperitoneally, it produced only a 9 μg ml-1 concentration of granulocyte colony-stimulating factor in ascites, which is approximately 3 orders of magnitude less than the monoclonal antibody. This method may be applicable to production of other recombinant proteins, although further optimization in the conditions of production would be needed in order to reach much higher yields. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Summary Monoclonal antibodies (IgG1) against high molecular weight antigen A-1-43 on human melanoma cell line A-375 were successfully linked to the anti-tumour protein neocarzinostatin (NCS) using the heterobifunctional reagent N-succinimidyl 3-(2-pyridyldithio)-propionate (SPDP). The conjugate retained both the reactivity of the antibody and the toxicity of the drug. The antigen-bearing cell line A-375, antigen-lacking cell line MeWo and normal skin fibroblasts were exposed to NCS-monoclonal antibody conjugates. As negative control, cells were also treated with free NCS and NCS coupled to normal mouse IgG1 antibodies. Inhibition of 3H-thymidine uptake after treatment was used to measure the biological activity of the cytotoxic drug complex or substance, respectively.Comparing the inhibition dose for 50% uptake (ID50) it was found that the monoclonal antibody-drug complex is about 100 times more toxic for the antigen-bearing cell line than free NCS or normal mouse IgG1-NCS. This high toxicity is due to a local increase of drug concentration on these cells. With the two cell lines lacking the appropriate antigen no significant differences in the ID50 values were observed. A selectivity factor of 40–50 was obtained by comparing the cytotoxic effect of the monoclonal antibody-NCS conjugate upon the antigen-bearing as opposed to the antigen-lacking cell type. These data demonstrate, that the toxicity of NCS can be directed by monoclonal antibodies to human tumour cells carrying the corresponding surface antigen.  相似文献   

14.
Immunotoxins were prepared with a Ber-H2 (anti-CD30) monoclonal antibody and native or recombinant dianthin 30, a ribosome-inactivating protein fromDianthus caryophyllus (carnation). Both immunotoxins selectively inhibited protein synthesis by CD30+ cell lines D430B (lymphoblastoid, infected with Epstein-Barr virus). L428 and L540 (both from Hodgkin's lymphoma). IC50 values (concentrations, as dianthin, causing 50% inhibition) ranged from 324 pM to 479 pM (immunotoxin with native dianthin 30) or from 45 pM to 182 pM (immunotoxin with recombinant dianthin 30). The effect of either immunotoxin on protein synthesis by the CD30 cell line K562 (from a chronic myeloid leukaemia) was not different from that of free dianthin (IC50 higher than nM).  相似文献   

15.
Studies were undertaken to identify cell surface markers specific for different phases of the cell cycle. Antisera were prepared in rabbits against membrane protein preparations from synchronized BW 5147 cells, an AKR mouse T-lymphoma cell line, in the G1, S, G2 or M phases of the cell cycle. These antisera were used to precipitate radioiodinated surface proteins from synchronized cells in the different phases. The immunoprecipitates were quantitatively analyzed by sodiumdodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Cells in S phase had significantly higher concentrations of proteins weighing 70 × 103 and 165 × 103 D than cells in G1 or G2 phase. The other major labeled surface components did not vary. These results were confirmed by quantitative absorption of the antisera with synchronized cells. Comparative analysis of the antisera showed that the 165 × 103 D peak contained at least two antigens, one recognized by both a-G1 and a-S and the other by a-G1 only. Though cells in S phase had large quantities of the 70 × 103 D protein, intact and SDS-solubilized membrane preparations from S phase could not elicit in rabbits any antibody against that protein. These antisera did, however, have good antibody titers to the other major protein peaks and the antisera developed against cells in G1, G2 or M had good anti-70 × 103 activity. The results suggest a qualitative molecular change in the 70 × 103 protein during S phase.  相似文献   

16.
17.
Studies were undertaken to identify cell surface markers specific for different phases of the cell cycle. Antisera were prepared in rabbits against membrane protein preparations from synchronized BW 5147 cells, an AKR mouse T-lymphoma cell line, in the G1, S, G2 or M phases of the cell cycle. These antisera were used to precipitate radioiodinated surface proteins from synchronized cells in the different phases. The immunoprecipitates were quantitatively analyzed by sodiumdodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Cells in S phase had significantly higher concentrations of proteins weighing 70 × 103 and 165 × 103 D than cells in G1 or G2 phase. The other major labeled surface components did not vary. These results were confirmed by quantitative absorption of the antisera with synchronized cells. Comparative analysis of the antisera showed that the 165 × 103 D peak contained at least two antigens, one recognized by both a-G1 and a-S and the other by a-G1 only. Though cells in S phase had large quantities of the 70 × 103 D protein, intact and SDS-solubilized membrane preparations from S phase could not elicit in rabbits any antibody against that protein. These antisera did, however, have good antibody titers to the other major protein peaks and the antisera developed against cells in G1, G2 or M had good anti-70 × 103 activity. The results suggest a qualitative molecular change in the 70 × 103 protein during S phase.  相似文献   

18.
On the basis of anti-TROP2 Fab antibody, this study seek to construct a eukaryotic expression system of human anti-TROP2 antibody IgG, and to analyse the inhibition function of human anti-TROP2 antibody IgG in the cell proliferation of pancreatic cancer. The heavy and light chain genes of anti-TROP2 antibody were amplified respectively to establish the recombinant expression vector of human anti-TROP2 antibody IgG, named pWS-anti-TROP2. The human anti-TROP2 antibody IgG was obtained through transfecting the plasmids into the CHO dhfr- cell line, selecting the monoclonal cell strains with high amounts of antibody expression by MTX screening and applying Protein G affinity in purification. The identification and immunologic activity of human anti-TROP2 antibody IgG were researched by Western Blot,SDS-PAGE, ELISA, immunofluorescence assay and flow cytometry method (FCM). MTT assay was conducted to analyse the inhibition effect of human anti-TROP2 antibody IgG on BxPC3 cell proliferation. The human anti-TROP2 antibody IgG eukaryotic expression system was established successfully to express human anti-TROP2 antibody IgG, in which the molecular weight of heavy chain and light chain were consistent with expectation, and it could specifically combine with TROP2 protein, the antibody titer reached 1:6,400. The MTT assay results indicated that human anti-TROP2 antibody IgG had a significant effect on inhibiting the proliferation of BxPC3 cell, and the inhibition function can be gradually increased with improved antibody dose and prolonged time. In the study, the human anti-TROP2 antibody IgG eukaryotic expression system was constructed successfully, the antibody could specifically bind to TROP2 protein on the surface of pancreatic cancer cells, and it is shown to have a significant inhibitory action in pancreatic cancer cell proliferation.  相似文献   

19.
We established a human IgM monoclonal antibody that defines a tumor-associated membrane antigen expressed on human melanoma cells. The antigen has been identified as the ganglioside GD2. In this paper, we describe the potential usefulness of the human monoclonal antibody for radioimaging. Nude mice bearing tumors derived from a human melanoma cell line were used as a model. Antibody activity was degradated significantly after labeling with 131I by the use of a modified chloramine-T method. After testing various concentrations, labeled antibody of a specific activity of 2.8 μCi/ μg produced the best results. Balb/c nude mice bearing a GD2-positive M14 melanoma cell line were injected with 10–30 μg of labeled antibody, and its radiolocalization in different organs and in the whole body were evaluated. The best tumor image was obtained on Day 6. The labeled antibody uptake ratio between tumor and muscle was 9.2:1; the ratio between tumor and liver was 1.4:1. These studies represent the first report of experimental tumor imaging with human monoclonal antibody. Human monoclonals will probably prove to be superior reagents for tumor imaging in melanoma patients if the problem of antibody radiolysis is resolved.  相似文献   

20.
The development of a monoclonal antibody to the deoxynucleoside bromodeoxyuridine (BrdU), combined with two parameter flow cytometry, has allowed us to examine large numbers of cells for non-S-phase DNA synthesis. Three human lymphoid cell populations were studied to determine the level of deoxynucleoside (dN) incorporation as a function of DNA content. In each population, non-S-phase DNA synthesis was observed. In a rapidly growing human T-lymphoblastoid cell line (CCRF-CEM), 53% of dN incorporation occurred in G0/G1 plus G2 + M. In chronic lymphocytic leukemia (CLL) cells stimulated with tetradecanoylphorbol acetate (TPA), 45% of the observed burst in thymidine incorporation was found to be localized to G0/G1 cells. Non-S-phase incorporation was not, however, limited to neoplastic cells. Normal human peripheral blood B cells treated with the Cowan strain of Staphylococcus aureus (CSA) undergo a transient burst in thymidine incorporation, but do not go on to divide in the absence of other stimuli. Flow-cytometric analysis showed that 80% of this CSA-stimulated dN incorporation was into G0/G1 cells. These data are consistent with a more dynamic state of DNA synthesis than usually envisioned. Furthermore, the data show that although thymidine incorporation levels are related to incorporation of dN into DNA, they can be unrelated to cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号