首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ecto-enzyme 5'-nucleotidase isolated from chicken gizzard has previously been shown to be a potent ligand of two glycoproteins of the extracellular matrix, namely fibronectin and laminin. Using immunofluorescent labeling techniques we observed that 5'-nucleotidase codistributed with laminin during the development of chicken striated muscle. In contrast, ecto-5'-nucleotidase was only faintly detectable on cells surrounded by a matrix expressing high levels of fibronectin. This distribution pattern distinguished 5'-nucleotidase from the pluripotent extracellular matrix receptors, chicken beta 1-integrins, which are expressed equally well in muscle and connective tissue. In addition, the specific activity of striated muscle ecto-5'-nucleotidase was stable during development and increased markedly posthatching. At each age considered, this specific activity corresponded to an 80-kDa enzyme which was inhibited by alpha,beta-methyleneadenosine diphosphate or by a monoclonal antibody directed against the smooth muscle isoform of the enzyme. Previous in vitro studies have revealed that 5'-nucleotidase is involved in the spreading of various mesenchyme-derived cells, such as chicken embryonic fibroblasts and myoblasts, on a laminin substrate. A prerequisite to examining a potential in vivo role for 5'-nucleotidase as an extracellular matrix ligand was to study its distribution. In adult muscle, 5'-nucleotidase displayed a more restricted distribution than in embryo. Results show that, in vivo, 5'-nucleotidase is revealed by immunofluorescent labeling using poly- and monoclonal antibodies to chicken gizzard 5'-nucleotidase in two structures, the costameres and myotendinous junctions, which are closely related to the focal adhesion sites observed in cell culture.  相似文献   

2.
5'-Nucleotidase of a human pancreatic tumor cell line (PaTu II) has been purified to homogeneity after extraction with detergent followed by two affinity chromatographic steps. Sodium dodecyl sulphate polyacrylamide gel electrophoresis of purified 5'-nucleotidase revealed a single polypeptide band of 67 kDa. The Western blotted enzyme can be overlaid with concanavalin A proving its glycoprotein nature. After treatment with endoglycosidase F the deglycosylated 5'-nucleotidase exhibits an apparent molecular mass of 58 kDa. The kinetic properties of the solubilized enzyme have been determined (Km (AMP) of 4.0 microM; Vmax (AMP) = 8.6 muMOL/min.mg). Adenosine 5'-[alpha,beta-methylene]diphosphate is a competitive inhibitor of 5'-nucleotidase, whereas concanavalin A inhibits the enzymatic activity in a non-competitive manner. Polyclonal antibodies against purified 5'-nucleotidase of PaTu II have been produced which inhibit its enzymatic activity. Polyclonal antibodies raised against the enzyme purified from rat liver or bull seminal plasma also recognize 5'-nucleotidase of PaTu II cells, whereas polyclonal and monoclonal antibodies against the enzyme derived from chicken gizzard show no cross-reactivity. 5'-Nucleotidase appears to be concentrated in the plasma membrane of PaTu II cells as judged by cell fractionation and indirect immunofluorescence studies.  相似文献   

3.
J Dornand  C Réminiac  J C Mani 《Biochimie》1977,59(4):425-432
The 5'-nucleotidase properties of isolated lymphocyte plasma membranes from young pig mesenteric nodes are described; nucleosides-5'-monophosphates are the substrates of this specific enzyme. Concanavalin A inhibits this enzyme; on the same membranes this mitogen does not affect alkaline phosphatase and activates the membrane bound (Ca2+) ATPase. The 5'-nucleotidase inhibition is due to a specific interaction of Con A with carbohydrate groups of the membrane; its high positive cooperativity suggests that the lectin promotes reorganization of the membrane bound 5'-nucleotidase. Solubilization of the 5'-nucleotidase does not prevent the effect of Con A and the solubilized enzyme is firmly bound by Con A-Sepharose 4B; these results suggest that Con A inhibits the enzyme by a direct interaction and that 5'-nucleotidase can be considered as an eventual receptor for the lectin.  相似文献   

4.
Chicken gizzard 5'-nucleotidase represents an ectoenzyme which is linked to the plasma membrane via a phosphatidylinositol glycan. We have characterized the possible domain-like organization of 5'-nucleotidase by limited proteolysis. A hydrophobic proteolytic fragment carrying the intact C-terminus, as well as two major hydrophilic products, were identified. We developed procedures for specific radiolabelling of the active center of 5'-nucleotidase. This allowed us to locate the catalytic site within hydrophilic fragments obtained after limited proteolysis. We demonstrate that removal of N-linked carbohydrate chains increases the sensitivity of 5'-nucleotidase to proteolytic attack, indicating that sugar moieties protect against proteolysis. 5'-Nucleotidase represents a binding protein for components of the extracellular matrix. The interaction between 5'-nucleotidase and the laminin/nidogen complex unmasked proteolytic cleavage sites in the C-terminal portion of the enzyme. This resulted in the specific production of a hydrophilic form of 5'-nucleotidase. In summary, we have further characterized chicken gizzard 5'-nucleotidase: (1) the protein is organized into two domain-like structures, (2) the N-terminal domain harbors the active center; (3) N-linked carbohydrates protect the protein against proteolytic degradation; (4) interaction with components of the extracellular matrix alters the conformation of 5'-nucleotidase.  相似文献   

5.
Antibodies raised against bovine 5'-nucleotidase inhibit this enzyme as well as 5'-nucleotidase from other bovine tissues, showing common structure(s) between these proteins. However, an IgG fraction directed against the glucidic moiety of the liver enzyme did not cross-react with the enzyme from lymphocyte or caudate nuclei, a clear indication that within the same species the 5'-nucleotidase differs from one cell type to another. In addition, immunoblots after electrophoresis show that the previous antibodies recognize 5'-nucleotidase from human, mouse or chicken origin. However, only human 5'-nucleotidase activity can be inhibited by the antibodies. Thus at least three groups of antigenic determinants must exist on the 5'-nucleotidase: one related to the glucidic moiety of the glycoprotein whose binding inhibits the enzyme activity, another related to the catalytic site, as its binding also led to enzyme inhibition, and a last one of structural nature. It seems that the third group of determinant is common to many species, whereas the second one is more restricted.  相似文献   

6.
Cytochemical demonstrations of 5'-nucleotidase and alkaline phosphatase reveal the activity of these enzymes on regions of cell apposition from the late four-cell stage onward. These enzyme activities also appear on regions of artificial cell contact between aggregated embryos having more than four cells. Cytochemistry of single two-cell embryos does not reveal 5'-nucleotidase nor alkaline phosphatase activity, however, these enzyme activities appear at both the artificial and natural contacts in chimaeras of two two-cell embryos. We interpret these results as meaning: (1) that cell contact causes the regionalization of 5'-nucleotidase and alkaline phosphatase activity on the cell surface, (2) that these enzyme activities can be induced or enhanced by contact between two two-cell embryos, (3) that a signal is transmitted from the artificial to the natural contact.  相似文献   

7.
Cytosolic 5'-nucleotidase from bovine liver has been purified to homogeneity. Two affinity chromatographies on concanavalin A and 5'AMP-Sepharose columns result in a 12,000-fold purification. The sequential elution of glycoproteins from the concanavalin-A-Sepharose column with methyl alpha-D-glucoside and methyl alpha-D-mannoside greatly increases the degree of purification of the enzyme. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate shows two subunits having apparent molecular masses of 65 kDa and 57 kDa respectively, while only one band at 70 kDa is observed in the case of the membrane-bound 5'-nucleotidase. Both the Stokes radii, measured by gel exclusion HPLC, and the sedimentation coefficient, determined by density gradient ultracentrifugation, indicate that the cytosolic enzyme is a heterodimer of about 130 kDa. This contrasts with the membrane-bound 5'-nucleotidase which is a homodimer of 140 kDa. Moreover, the antibodies raised against the membrane 5'-nucleotidase inhibited the cytosolic form indicating that a common antigenic determinant(s) exists between the two isoenzymes. However, structural differences are revealed by immunoblotting. In the same way, the effect of lectins suggests that differences in the structure of the carbohydrate chains exist between the two isoenzymes. The purified cytosolic enzyme has lower affinity for the nucleotides than does the membrane enzyme. In addition, while ADP, [alpha,beta-CH2]ADP and ATP were strong competitive inhibitors of the membrane enzyme, ADP and ATP activate the cytosolic form and [alpha,beta-CH2]ADP has no effect. Moreover, two pH optima at 7.5 and 9.5 are observed in the cytosolic enzyme while only one at 7.5 occurred in the membrane form. Finally the exogenous cations, MgCl2 and MnCl2, are necessary for the maximal activity of the cytosolic but not of the membrane 5'-nucleotidase. All these observations indicate that the two isoenzymes are different.  相似文献   

8.
The subcellular distribution of 5'-nucleotidase and adenosine deaminase in rat brain hypothalamus and hippocampus was studied. In the hippocampus the 5'-nucleotidase activity was shown to be much higher than in the hypothalamus, while the adenosine deaminase activity, contrariwise, is nearly two times as high as that in the hypothalamus. During the analysis of subcellular distribution 5'-nucleotidase and adenosine deaminase were detected in all fractions under study, i. e., in nuclear, soluble, myelin fractions as well as in synaptic membranes, synaptosomes and "pure" mitochondria. The highest 5'-nucleotidase activity was found in the myelinic and synaptic fractions both in the hypothalamus and in the hippocampus. The highest adenosine deaminase activity was detected in the soluble fraction of the above structures. The enzyme activity in synaptic membranes and synaptosomes was nearly two times as low.  相似文献   

9.
5'-Nucleotidase was purified greater than 1000-fold from human placenta by treatment of plasma membranes with S. aureus phosphatidylinositol-specific phospholipase C and affinity chromatography on Con A Sepharose and AMP-Sepharose. The resulting enzyme had a specific activity of greater than 5000 mumol/hr/mg protein and a subunit molecular weight of 73,000. Goat antibodies against 5'-nucleotidase inhibited enzyme activity and detected 5'-nucleotidase after Western blotting. These antibodies also recognized a soluble form of 5'-nucleotidase and residual membrane-bound 5'-nucleotidase which could not be released by phosphatidylinositol-specific phospholipase C treatment, suggesting that the three forms of the enzyme are structurally related. The soluble 5'-nucleotidase may be derived from the membrane-bound form by the action of an endogenous phospholipase C. The structural basis for the inability of some of the membrane-bound 5'-nucleotidase to be released by phosphatidylinositol-specific phospholipase C is unknown.  相似文献   

10.
Mutants of Escherichia coli have been selected for the absence of 5'-nucleotidase (uridine diphosphate-sugar hydrolase) and 3'-nucleotidase (2',3'-cyclic phophodiesterase). Mutants selected for the absence of 5'-nucleotidase are of two kinds: those that lack detectable activity for the enzyme (Ush(-)), and those that possess activity when cell extracts are assayed, but not when intact cells are assayed (cryptic; Crp(-)). The latter class is probably identical to a type of mutant previously reported by Ward and Glaser. When mutants are selected for the absence of 3'-nucleotidase, Crp(-)mutants are also obtained. Thus far, however, mutants totally lacking this enzyme have not been found. The location on the genetic map of one ush mutation is at position 11 min and that of one crp mutation at approximately 67 min. In the crp mutant, 5'-nucleotidase and 3'-nucleotidase remain located in the periplasm. This mutant is also cryptic for alkaline phosphatase but not for acid hexose phosphatase. Treatment of cells with ethylenediamine-tetraacetate substantially alleviated crypticity. These data are discussed in terms of the organization of periplasmic enzymes and of the outer membrane as a permeability barrier.  相似文献   

11.
The activity of 5'-nucleotidase (5'-ribonucleotide phosphohydrolase, EC 3.1.3.5) was examined in membrane fractions isolated by hypotonic shock-LiBr treatment (fraction HL) and sucrose gradient separation (fraction S) of rat ventricle homogenate. The enzyme activity in these two fractions differed significantly in several respects. In fraction HL, 5'-nucleotidase had a high affinity for AMP (Km 35 microM), and ATP was a potent competitive inhibitor. In contrast, the 5'-nucleotidase displayed by fraction S showed a low substrate affinity (Km 130 microM) and less sensitivity to ATP. Treatment of membranes with trypsin and neuraminidase markedly stimulated 5'-nucleotidase in fraction HL, whereas only a modest effect was observed in fraction S. Exposure of the membranes to Triton X-100 resulted in a 60% and 10% increase in the enzyme activity in fractions HL and S, respectively. The characteristic activity ratios of 5'-nucleotidase at 200 microM relative to 50 microM AMP in fractions HL and S were modified by alamethicin in an opposite way and became identical. Although concanavalin A almost completely inhibited the 5'-nucleotidase activity in both membrane preparations at a concentration of 2 microM, Hill plots of the data on concanavalin A inhibition revealed a coefficient of 2.2 for fraction S and 1.1 for fraction HL. The differences in 5'-nucleotidase activity of the two membrane fractions are considered to be due to differences in the orientation of the vesicles of the sarcolemmal preparations. These results suggest that two distinct catalytic sites for 5'-nucleotidase are present at the intra- and extracellular surface of the rat heart sarcolemma.  相似文献   

12.
The effects of phospholipids on the properties of hepatic 5'-nucleotidase   总被引:1,自引:0,他引:1  
Arrhenius plots of 5'-nucleotidase activity in microsomes or plasma membranes from rat liver exhibited transitions at approximately 35 degrees C. The enzyme was purified from homogenates after solubilization in 2% Triton X-100 and 1% sodium deoxycholate. After the initial steps of the purification, the enzyme was recovered in membranes, as judged by both thin section and freeze-fracture electron microscopy, which contained sphingomyelin, phosphatidylcholine, and phosphatidylethanolamine. The purest fractions of 5'-nucleotidase were enriched approximate 3,000-fold, consisted of similar membranes, but only contained sphingomyelin. Thermal transitions were detected in Arrhenius plots of 5'-nucleotidase after detergent solubilization, in the membranes which contained the three phospholipids, but not in the purified fraction which contained only sphingomyelin; transitions were also detected after reassociation of the purified enzyme with microsomal or plasma membrane lipids and phosphatidylcholine but not with phosphatidylethanolamine. Phosphatidylcholines containing specific fatty acids all affected the energy of activation of 5'-nucleotidase, and the detergent Sarkosyl, which has been shown to dissociate phospholipids from 5'-nucleotidase (Evans, W. H., and Gurd, J. W. (1973) Biochem. J. 133, 189-199), caused a marked decrease in the stability of the enzyme to heating. Inhibition of 5'-nucleotidase by concanavalin A followed by reactivation with alpha-methyl-D-mannoside resulted in linear Arrhenius plots of 5'-nucleotidase activity in membrane fractions, and in lower transition temperatures for the detergent, solubilized enzyme. It is concluded that in situ, 5'-nucleotidase interacts with both sphingomyelin and phosphatidylcholine; the first apparently influences the stability of the enzyme and the second, the energy of activation. In addition, the lipid environment of the enzyme seems to be altered as a result of lectin binding.  相似文献   

13.
A cDNA encoding a 5'-nucleotidase was identified by screening a lambda gt10 cDNA library from the electric lobe of Discopyge ommata using a cDNA probe containing the complete open reading frame coding for the rat liver enzyme. Nucleotide sequence analysis defines an open reading frame of 577 amino acids, corresponding to a calculated molecular mass of 63,833 Da. The N-terminus of the mature protein, as determined by direct protein sequencing, is preceded by 29 amino acid residues comprising a signal peptide. The C-terminus contains a stretch of hydrophobic amino acids, considered to be cleaved on post-translational modification and exchanged for glycosylphosphatidylinositol as a membrane anchor. The predicted protein contains four potential N-linked glycosylation sites. Electric ray 5'-nucleotidase shares 61% amino acid identity with the enzymes from rat liver and human placenta, and about 23% with bacterial proteins possessing 5'-nucleotidase activity and also additional enzyme activities like UDP-glucose hydrolase. Polyclonal antibodies raised against 5'-nucleotidase from mammalian sources or the electric ray electric organ reveal mutual cross-reactivity. Interestingly, there are 5-7 domains highly conserved in procaryotes and vertebrates in enzymes exhibiting 5'-nucleotidase, 3'-nucleotidase or phosphodiesterase activity. 5'-nucleotidase isolated from Torpedo electric organ hydrolyzes UDP-glucose at 8% of the rate of AMP hydrolysis. The possible phylogenetic origin of vertebrate 5'-nucleotidase from multifunctional nucleotide hydrolases is discussed.  相似文献   

14.
A preliminary examination for the purification and characterization of 5'-nucleotidase of fish muscle was carried out and the following results were obtained. 1. The activities of 5'-nucleotidase in the muscles of marine vertebrates and invertebrates (total 11 species) were determined. The highest activity of 5'-nucleotidase was found in Blackrock fish Sebastes inermis, which was then used as a material for estimation of subcellular distribution and solubilization of the enzyme. 2. The 5'-nucleotidase of ordinary muscle of the fish Sebastes inermis was found in nuclear, microsomal and cytosolic fractions. About half of the total activity was found in the nuclear fraction, whereas the highest specific activity was observed in the microsomal fraction. 3. Complete solubilization of the enzyme was attained by using a high concentration of detergent such as Triton X-100, CHAPS, octylglucoside, octylthioglucoside and sodium deoxycholate, suggesting that the enzyme was tightly bound to the membrane. 4. Based on the results of solubility and stability tests, Triton X-100 seemed suitable for solubilizing 5'-nucleotidase from the membrane. 5. Microsomal 5'-nucleotidase was an Mg(2+)-activated enzyme, and no inactivation was observed up to 50 mM of Mg2+.  相似文献   

15.
5'-Nucleotidase from human seminal plasma was purified to electrophoretic homogeneity and some of its kinetic and molecular properties compared with those of 5'-nucleotidase from bull seminal plasma. The purification of the enzyme was achieved by using the same affinity chromatography media (Con A-Sepharose and AMP-Agarose or ADP-Agarose) previously used for the purification of bull seminal plasma 5'-nucleotidase (Fini, C., Ipata, P.L., Palmerini, C.A. and Floridi, A. (1983) Biochim. Biophys. Acta 748, 405-412). However, in the present purification procedure no detergent was used as it had been necessary for the purification of the bovine enzyme. The experimental data reveal some main differences between these two enzymes; first, the human enzyme seems to be constituted of a single polypeptide chain of about 71 kDa, while the 5'-nucleotidase of bull seminal plasma, in non denaturing detergent solutions, is a homodimer of about 160 kDa. Another most remarkable difference is that the human enzyme does not seem to contain a phosphatidylinositol anchoring system like the one present in the bovine enzyme and in 5'-nucleotidase of different sources (Low, M.G. (1987) Biochem. J. 244, 1-13). Finally, the AMPase activity of 5'-nucleotidase from human seminal plasma is not affected by dithiothreitol which, on the contrary, is a powerful inhibitor of the bovine enzyme causing the dissociation of its subunits which are held together by disulphide bridges (Fini, C., Minelli, A., Camici, M. and Floridi, A. (1985) Biochem. Biophys. Acta 827, 403-409).  相似文献   

16.
I Wada  S Eto  M Himeno  K Kato 《Journal of biochemistry》1987,101(5):1077-1085
5'-Nucleotidase was found in purified rat liver tritosomes. When tritosomes were subfractionated into the membrane and soluble contents fractions, 73% of the total 5'-nucleotidase activity was found in the membrane fraction and 24% in the soluble contents fraction. Immunoblotting using specific polyclonal antibodies against the rat liver plasma membrane 5'-nucleotidase showed that the mobilities on SDS-polyacrylamide gel electrophoresis of both 5'-nucleotidases in the membrane and contents fractions were identical to that of the enzyme in the plasma membranes (Mr = 72,000). 5'-Nucleotidases in the membrane and contents fractions were sensitive to neuraminidase and converted into a form that was 4 kDa smaller after digestion, as observed in the case of plasma membrane enzyme. 5'-Nucleotidases, both from the membrane and contents fractions, were purified using immunoaffinity chromatography, and the isoelectric points, heat stability, and oligomeric structure of the purified enzymes were compared. Isoelectric focusing and the heat stability test indicated the resemblance of the soluble enzyme to the membrane-bound enzyme. However, the membrane-bound enzyme aggregated in the absence of Triton X-100, whereas the soluble enzyme behaved as a dimer. The topography of 5'-nucleotidase in the tritosomal membranes was studied using antibodies against 5'-nucleotidase and neuraminidase treatment. The inhibition of 5'-nucleotidase were not observed in the intact tritosomal fraction until the tritosomes had been disrupted by osmotic shock. These results show that the active sites and the oligosaccharide chains of 5'-nucleotidase are located on the inside surface of the tritosomal membranes.  相似文献   

17.
The ectoenzyme 5'-nucleotidase purified from chicken gizzard is shown to specifically interact with laminin and fibronectin, components of the extracellular matrix, by a number of different techniques: (i) cosedimentation with laminin by sucrose gradient centrifugation; (ii) affinity adsorption to both laminin- and fibronectin-Sepharose 4-B; (iii) specific binding to both laminin and fibronectin dotted onto cellulose filters; and (iv) monoclonal antibodies against 5'-nucleotidase are shown to interfere with the interaction of 5'-nucleotidase with laminin and fibronectin. For all the techniques employed, the interactions were found to be specific, since 5'-nucleotidase did not bind to unrelated proteins such as bovine serum albumin or to monomeric actin. The interaction of purified chicken gizzard 5'-nucleotidase could be demonstrated for the hydrophobic enzyme solubilized in detergent and after its reconstitution into artificial phospholipid vesicles. The affinity adsorption experiments indicate that reconstituted enzyme binds more strongly to both laminin and fibronectin. The 5'-nucleotidase employed in this study is anchored to the plasma membrane by a glycan-phosphatidylinositol linker. After treatment with phosphatidylinositol-specific phospholipase C, the enzyme is transformed into a hydrophilic form, for which interactions with laminin and fibronectin could also be demonstrated by the dot-blot technique. Thus controlled cleavage of the phosphatidylinositol linker of 5'-nucleotidase could enable cells to rapidly alter their adhesiveness to certain components of the extracellular matrix.  相似文献   

18.
Transport and metabolism of 5'-nucleotidase in a rat hepatoma cell line   总被引:3,自引:0,他引:3  
The biosynthesis of the ectoenzyme 5'-nucleotidase in the rat hepatoma cell line H4S has been studied by pulse-labeling with [35S]methionine and subsequent immunoprecipitation of the cell lysate. 5'-Nucleotidase is a membrane glycoprotein with an apparent molecular mass on SDS-gels of 72 kDa. The enzyme is initially synthesized as a 68-kDa precursor which is converted to the mature 72-kDa form in 15-60 min (t1/2 = 25 min). The molecular mass of the unglycosylated enzyme is approximately 58 kDa. Culturing the cells in the presence of varying concentrations of tunicamycin, an inhibitor of N-glycosylation, revealed six species of 5'-nucleotidase after sodium dodecyl sulfate/polyacrylamide electrophoresis. This indicates the presence of five N-linked oligosaccharide chains accounting for the difference between the 58-kDa polypeptide backbone and the 68-kDa species. The 68-kDa precursor is susceptible to cleavage by endo-beta-N-acetylglycosaminidase H; the 72-kDa mature protein is converted to several bands upon this treatment. This result indicates that part of 5'-nucleotidase keeps one or two high-mannose or hybrid chains in the mature form, even after prolonged pulse-chase labeling. The newly synthesized mature enzyme reaches the cell surface after 20-30 min. The half-life of 5'-nucleotidase is about 30 h in H4S cells. No immunoprecipitable 5'-nucleosidase is released into the culture medium.  相似文献   

19.
Ecto-5’-nucleotidase: Structure function relationships   总被引:1,自引:0,他引:1  
Ecto-5'-nucleotidase (ecto-5'-NT) is attached via a GPI anchor to the extracellular membrane, where it hydrolyses AMP to adenosine and phosphate. Related 5'-nucleotidases exist in bacteria, where they are exported into the periplasmic space. X-ray structures of the 5'-nucleotidase from E. coli showed that the enzyme consists of two domains. The N-terminal domain coordinates two catalytic divalent metal ions, whereas the C-terminal domain provides the substrate specificity pocket for the nucleotides. Thus, the substrate binds at the interface of the two domains. Here, the currently available structural information on ecto-5'-NT is reviewed in relation to the catalytic properties and enzyme function.  相似文献   

20.
The 5'-nucleotidase localized in rat liver plasma membranes was purified to a single protein, which contained phospholipid. The molecular weight and the sedimentation constant were about 150 000 and 7 S in the presence of sodium deoxycholate, while the enzyme protein was aggregated when the preparation was dialyzed thoroughly. The purified 5'-nucleotidase exhibited the same properties as the 5'-nucleotidase in plasma membranes. The 5'-nucleotidase activity was increased by the addition of various bile salts or by the solubilization of membranes with trypsin, papain or phospholipase C. The solubilized and aggregated forms of the enzyme showed different substrate specificity for nucleotides, pH optimum, heat stability and Km. The purified enzyme catalyzed an exchange reaction between AMP and adenosine, which was diminished by the addition of sodium deoxycholate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号