首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yersinia pestis, the plague bacillus, has an exceptional pathogenicity but the factors responsible for its extreme virulence are still unknown. A genome comparison with its less virulent ancestor Yersinia pseudotuberculosis identified a few Y. pestis-specific regions acquired after their divergence. One of them potentially encodes a prophage (YpfPhi), similar to filamentous phages associated with virulence in other pathogens. We show here that YpfPhi forms filamentous phage particles infectious for other Y. pestis isolates. Although it was previously suggested that YpfPhi is restricted to the Orientalis branch, our results indicate that it was acquired by the Y. pestis ancestor. In Antiqua and Medievalis strains, YpfPhi genome forms an unstable episome whereas in Orientalis isolates it is stably integrated as tandem repeats. Deletion of the YpfPhi genome does not affect Y. pestis ability to colonize and block the flea proventriculus, but results in an alteration of Y. pestis pathogenicity in mice. Our results show that transformation of Y. pestis from a classical enteropathogen to the highly virulent plague bacillus was accompanied by the acquisition of an unstable filamentous phage. Continued maintenance of YpfPhi despite its high in vitro instability suggests that it confers selective advantages to Y. pestis under natural conditions.  相似文献   

2.
鼠疫是由鼠疫耶尔森菌(Yersinia pestis,Y. pestis)感染引起的一种人畜共患病。鼠疫在世界范围内出现过3次大流行,均引起致命的瘟疫。由于自然疫源面积不断扩大和人口流动愈加频繁,我国的鼠疫防治形势依旧严峻。本文就鼠疫耶尔森菌的毒力因子、对宿主细胞的黏附和侵袭、胞内繁殖、宿主内播散等机制的研究进展进行总结,有助于揭示鼠疫独特的致病和传播机制,为精准防治鼠疫提供工作基础。  相似文献   

3.
Plague is a flea-borne zoonosis caused by the bacterium Yersinia pestis. Y. pestis mutants lacking the yersiniabactin (Ybt) siderophore-based iron transport system are avirulent when inoculated intradermally but fully virulent when inoculated intravenously in mice. Presumably, Ybt is required to provide sufficient iron at the peripheral injection site, suggesting that Ybt would be an essential virulence factor for flea-borne plague. Here, using a flea-to-mouse transmission model, we show that a Y. pestis strain lacking the Ybt system causes fatal plague at low incidence when transmitted by fleas. Bacteriology and histology analyses revealed that a Ybt-negative strain caused only primary septicemic plague and atypical bubonic plague instead of the typical bubonic form of disease. The results provide new evidence that primary septicemic plague is a distinct clinical entity and suggest that unusual forms of plague may be caused by atypical Y. pestis strains.  相似文献   

4.
Host-pathogen interactions result in protein expression changes within both the host and the pathogen. Here, results from proteomic characterization of host response following exposure to Yersinia pestis, the causative agent of plague, and to two near neighbors, Yersinia pseudotuberculosis and Yersinia enterocolitica, are reported. Human monocyte-like cells were chosen as a model for macrophage immune response to pathogen exposure. Two-dimensional electrophoresis followed by mass spectrometry was used to identify host proteins with differential expression following exposure to these three closely related Yersinia species. This comparative proteomic characterization of host response clearly shows that host protein expression patterns are distinct for the different pathogen exposures, and contributes to further understanding of Y. pestis virulence and host defense mechanisms. This work also lays the foundation for future studies aimed at defining biomarkers for presymptomatic detection of plague.  相似文献   

5.
One of the most virulent and feared bacterial pathogens is Yersinia pestis, the aetiologic agent of bubonic plague. Characterization of the O-antigen gene clusters of 21 serotypes of Yersinia pseudotuberculosis and the cryptic O-antigen gene cluster of Y. pestis showed that the plague bacillus is most closely related to and has evolved from Y. pseudotuberculosis serotype O:1b. The nucleotide sequences of both gene clusters (about 20.5 kb each) were determined and compared to identify the differences that caused the silencing of the Y. pestis gene cluster. At the nucleotide sequence level, the loci were 98.9% identical and, of the 17 biosynthetic genes identified from the O:1b gene cluster, five were inactivated in the Y. pestis cluster, four by insertions or deletions of one nucleotide and one by a deletion of 62 nucleotides. Apparently, the expression of the O-antigen is not beneficial for the virulence or to the lifestyle of Y. pestis and, therefore, as one step in the evolution of Y. pestis, the O-antigen gene cluster was inactivated.  相似文献   

6.
To maintain continuous circulation of plague pathogen in natural foci, the pathogen should be capable of invading host organism, resisting the bactericide protective systems of rodent, and reproducing itself to maintain the content of bacteria at a level sufficient for further transmission by fleas to a new host. Each of these stages of the Yersinia pestis circulation is determined by a variety of factors of plague pathogen, which may act either individually or in combination. Each of the factors itself may be involved in the pathological process at different stages of its development or in pathogen transmission. However, it is only the aggregate of the factors (regardless of significant or insignificant individual contribution to the sum effect) that provides persistence of plague pathogen in natural foci. The plague pathogen factors providing its transmission from one host organism to the next as well as correlation of individual factors of pathogensis and expression of various household genes with plague pathogensis virulence are considered in the second communication. This review was compiled on the basis of not only well-known works but also some sources of limited availability, particularly, for English-speaking audience.  相似文献   

7.
Yersinia pestis is the causative agent responsible for bubonic and pneumonic plague. The bacterium uses the pLcr plasmid-encoded type III secretion system to deliver virulence factors into host cells. Delivery requires ATP hydrolysis by the YscN ATPase encoded by the yscN gene also on pLcr. A yscN mutant was constructed in the fully virulent CO92 strain containing a nonpolar, in-frame internal deletion within the gene. We demonstrate that CO92 with a yscN mutation was not able to secrete the LcrV protein (V-Antigen) and attenuated in a subcutaneous model of plague demonstrating that the YscN ATPase was essential for virulence. However, if the yscN mutant was complemented with a functional yscN gene in trans, virulence was restored. To evaluate the mutant as a live vaccine, Swiss-Webster mice were vaccinated twice with the ΔyscN mutant at varying doses and were protected against bubonic plague in a dose-dependent manner. Antibodies to F1 capsule but not to LcrV were detected in sera from the vaccinated mice. These preliminary results suggest a proof-of-concept for an attenuated, genetically engineered, live vaccine effective against bubonic plague.  相似文献   

8.
Yersinia pestis, the causative agent of plague, is unique among the enteric group of Gram-negative bacteria in relying on a blood-feeding insect for transmission. The Yersinia-flea interactions that enable plague transmission cycles have had profound historical consequences as manifested by human plague pandemics. The arthropod-borne transmission route was a radical ecologic change from the food-borne and water-borne transmission route of Yersinia pseudotuberculosis, from which Y. pestis diverged only within the last 20000 years. Thus, the interactions of Y. pestis with its flea vector that lead to colonization and successful transmission are the result of a recent evolutionary adaptation that required relatively few genetic changes. These changes from the Y. pseudotuberculosis progenitor included loss of insecticidal activity, increased resistance to antibacterial factors in the flea midgut, and extending Yersinia biofilm-forming ability to the flea host environment.  相似文献   

9.
Han Y  Geng J  Qiu Y  Guo Z  Zhou D  Bi Y  Du Z  Song Y  Wang X  Tan Y  Zhu Z  Zhai J  Yang R 《DNA and cell biology》2008,27(8):453-462
The catalase or catalase-peroxidase activity commonly exists in many pathogens and plays an important role in resisting the oxidative burst of phagocytes helping the pathogen persistently colonize in the host. Yersinia pestis is a facultative pathogen and the causative agent of plague. KatY has been identified as a thermosensing antigen with modest catalase activity in this pathogen. Here Y. pestis KatA and KatY were experimentally confirmed as a monofunctional catalase and bifunctional catalase-peroxidase, respectively. Their expression induced by H2O2 was proven to be mediated by the oxidative regulator, OxyR. Expression of KatA changed with growth phases and was crucial to its traditional physiological role in protecting Y. pestis cells against toxicity of exogenous H2O2. KatY was regulated by temperature and H2O2, two major elements of phagolysosomal microenvironments. Consistent with the above results, gene expression of katY increased significantly during intracellular growth of Y. pestis compared with that in vitro growth. However, a DeltakatY mutant was fully virulent to mice, suggesting that KatY is not required for Y. pestis virulence.  相似文献   

10.
Yersinia pestis, the causative agent of the plague, employs a type III secretion system (T3SS) to secrete and translocate virulence factors into to the cytoplasm of mammalian host cells. One of the secreted virulence factors is YopR. Little is known about the function of YopR other than that it is secreted into the extracellular milieu during the early stages of infection and that it contributes to virulence. Hoping to gain some insight into the function of YopR, we determined the crystal structure of its protease-resistant core domain, which consists of residues 38-149 out of 165 amino acids. The core domain is composed of five alpha-helices that display unexpected structural similarity with one domain of YopN, a central regulator of type III secretion in Y. pestis. This finding raises the possibility that YopR may play a role in the regulation of type III secretion.  相似文献   

11.
Yersinia pestis is the causative agent of plague, causing three human plague pandemics in history. Comparative and evolutionary genomics of Y. pestis are extensively discussed in this review. Understanding the genomic variability and the adaptive evolution of Y. pestis from the genomic point of view will contribute greatly to plague detection, identification, control and prevention.  相似文献   

12.
Yersinia pestis, the causative agent of plague, seems to have evolved from a gastrointestinal pathogen, Yersinia pseudotuberculosis, in just 1,500-20,000 years--an 'eye blink' in evolutionary time. The third pathogenic Yersinia, Yersinia enterocolitica, also causes gastroenteritis but is distantly related to Y. pestis and Y. pseudotuberculosis. Why do the two closely related species cause remarkably different diseases, whereas the distantly related enteropathogens cause similar symptoms? The recent availability of whole-genome sequences and information on the biology of the pathogenic yersiniae have shed light on this paradox, and revealed ways in which new, highly virulent pathogens can evolve.  相似文献   

13.
14.
鼠疫耶尔森氏菌质粒上重要毒力相关基因的克隆与表达   总被引:1,自引:0,他引:1  
鼠疫耶尔森氏菌含有3种质粒pMT1、pPCP1和pCD1,这3种质粒编码鼠疫耶尔森氏菌的多种重要毒力因子。首先通过生物信息学技术选定了18种可能重要的毒力相关基因作为拟克隆和表达的目的基因。通过:PCR技术、TA克隆技术、双酶切技术获得目的片段。这些目的片段再分别克隆入原核表达载体pET32a中,构建了一系列重组表达质粒,其中12个重要的毒力相关基因在原核表达载体pET32a中有稳定的高效表达,表达量占细菌总蛋白的20%~40%。实验结果为进一步研究质粒编码的毒力因子的结构与功能,及其作为新型疫苗选择的可能性奠定了基础。  相似文献   

15.
16.
The outer membrane of Gram-negative bacteria contains proteins that might be good targets for vaccines, antimicrobials or detection systems. The identification of surface located proteins using traditional methods is often difficult. Yersinia pestis, the causative agent of plague, was labelled with biotin. Tagged proteins were visualised through streptavidin probing of Western blots. Seven biotinylated proteins of Y. pestis were identified including two porins and the putative virulence factor catalase peroxidase.  相似文献   

17.
Yersinia pestis, the causative agent of bubonic and pneumonic plagues, has undergone detailed study at the molecular level. To further investigate the genomic diversity among this group and to help characterize lineages of the plague organism that have no sequenced members, we present here the genomes of two isolates of the "classical" antiqua biovar, strains Antiqua and Nepal516. The genomes of Antiqua and Nepal516 are 4.7 Mb and 4.5 Mb and encode 4,138 and 3,956 open reading frames, respectively. Though both strains belong to one of the three classical biovars, they represent separate lineages defined by recent phylogenetic studies. We compare all five currently sequenced Y. pestis genomes and the corresponding features in Yersinia pseudotuberculosis. There are strain-specific rearrangements, insertions, deletions, single nucleotide polymorphisms, and a unique distribution of insertion sequences. We found 453 single nucleotide polymorphisms in protein-coding regions, which were used to assess the evolutionary relationships of these Y. pestis strains. Gene reduction analysis revealed that the gene deletion processes are under selective pressure, and many of the inactivations are probably related to the organism's interaction with its host environment. The results presented here clearly demonstrate the differences between the two biovar antiqua lineages and support the notion that grouping Y. pestis strains based strictly on the classical definition of biovars (predicated upon two biochemical assays) does not accurately reflect the phylogenetic relationships within this species. A comparison of four virulent Y. pestis strains with the human-avirulent strain 91001 provides further insight into the genetic basis of virulence to humans.  相似文献   

18.
鼠疫耶尔森氏菌是烈性传染病鼠疫的病原菌,该菌在媒介(跳蚤)和宿主(哺乳动物)之间的循环过程中,基因表达适应环境谱的变化。本介绍鼠疫耶尔森氏菌适应环境信号如不同温度、离子浓度、pH等条件下的基因表达调控研究现状。  相似文献   

19.
The acquisition of foreign DNA by horizontal transfer from unrelated organisms is a major source of variation leading to new strains of bacterial pathogens. The extent to which this occurs varies widely, due in part to lifestyle factors that determine exposure to potential donors. Yersinia pestis, the plague bacillus, infects normally sterile sites in its mammalian host, but forms dense aggregates in the non-sterile digestive tract of its flea vector to produce a transmissible infection. Here we show that unrelated co-infecting bacteria in the flea midgut are readily incorporated into these aggregates, and that this close physical contact leads to high-frequency conjugative genetic exchange. Transfer of an antibiotic resistance plasmid from an Escherichia coli donor to Y. pestis occurred in the flea midgut at a frequency of 10-3 after only 3 days of co-infection, and after 4 weeks 95% of co-infected fleas contained an average of 103 antibiotic-resistant Y. pestis transconjugants. Thus, transit in its arthropod vector exposes Y. pestis to favourable conditions for efficient genetic exchange with microbial flora of the flea gut. Horizontal gene transfer in the flea may be the source of antibiotic-resistant Y. pestis strains recently isolated from plague patients in Madagascar.  相似文献   

20.
Mycobacterium tuberculosis and Yersinia pestis, the causative agents of tuberculosis and plague, respectively, are pathogens with serious ongoing impact on global public health and potential use as agents of bioterrorism. Both pathogens have iron acquisition systems based on siderophores, secreted iron-chelating compounds with extremely high Fe3+ affinity. Several lines of evidence suggest that siderophores have a critical role in bacterial iron acquisition inside the human host, where the free iron concentration is well below that required for bacterial growth and virulence. Thus, siderophore biosynthesis is an attractive target in the development of new antibiotics to treat tuberculosis and plague. In particular, such drugs, alone or as part of combination therapies, could provide a valuable new line of defense against intractable multiple-drug-resistant infections. Here, we report the design, synthesis and biological evaluation of a mechanism-based inhibitor of domain salicylation enzymes required for siderophore biosynthesis in M. tuberculosis and Y. pestis. This new antibiotic inhibits siderophore biosynthesis and growth of M. tuberculosis and Y. pestis under iron-limiting conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号