首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Induction of central deletional T cell tolerance by gene therapy   总被引:4,自引:0,他引:4  
Transgenic mice expressing an alloreactive TCR specific for the MHC class I Ag K(b) were used to examine the mechanism by which genetic engineering of bone marrow induces T cell tolerance. Reconstitution of lethally irradiated mice with bone marrow infected with retroviruses carrying the MHC class I gene H-2K(b) resulted in lifelong expression of K(b) on bone marrow-derived cells. While CD8 T cells expressing the transgenic TCR developed in control mice reconstituted with mock-transduced bone marrow, CD8 T cells expressing the transgenic TCR failed to develop in mice reconstituted with H-2K(b) transduced bone marrow. Analysis of transgene-expressing CD8 T cells in the thymus and periphery of reconstituted mice revealed that CD8 T cells expressing the transgenic TCR underwent negative selection in the thymus of mice reconstituted with K(b) transduced bone marrow. Negative selection induced by gene therapy resulted in tolerance to K(b). Thus, genetic engineering of bone marrow can be used to alter T cell education in the thymus by inducing negative selection.  相似文献   

3.
Intraepithelial lymphocytes (IEL) of the small intestine are anatomically positioned to be in the first line of cellular defense against enteric pathogens. Therefore, determining the origin of these cells has important implications for the mechanisms of T cell maturation and repertoire selection. Recent evidence suggests that murine CD8 alpha alpha intestinal IELs (iIELs) can mature and undergo selection in the absence of a thymus. We analyzed IEL origin by cell transfer, using two congenic chicken strains. Embryonic day 14 and adult thymocytes did not contain any detectable CD8 alpha alpha T cells. However, when TCR(+) thymocytes were injected into congenic animals, they migrated to the gut and developed into CD8alphaalpha iIELs, while TCR(-) T cell progenitors did not. The TCR V beta 1 repertoire of CD8 alpha alpha(+) TCR V beta 1(+) iIELs contained only part of the TCR V beta 1 repertoire of total iIELs, and it exhibited no new members compared with CD8(+) T cells in the thymus. This indicated that these T cells emigrated from the thymus at an early stage in their developmental process. In conclusion, we show that while CD8 alpha alpha iIELs originate in the thymus, T cells acquire the expression of CD8 alpha alpha homodimers in the gut microenvironment.  相似文献   

4.
The Ag receptor (TCR) on T lymphocytes has been shown to be specific for foreign antigenic peptides bound to MHC-encoded molecules. During T cell differentiation in the thymus this same TCR mediates the recognition of MHC molecules in the absence of foreign Ag, a process termed positive selection. To analyze the structural relationship between MHC-restricted Ag recognition and positive selection, we characterized two different transgenic lines of mice bearing TCR specific for pigeon cytochrome c and the Ek class II MHC molecule. The two TCR expressed in these animals differed by only one amino acid in the V-J junction of the alpha-chain. In vitro, we find that this TCR difference alters Ag fine specificity. Analysis of transgenic animals demonstrates that this change in the putative third complementarity determining region of the TCR also alters the specificity of positive selection in the thymus. These results suggest that the diversity of a TCR region that can be shown to affect the specificity of foreign Ag recognition may be influenced by selection in the thymus. The findings presented here are discussed in relation to the possible role of self-peptides in positive selection.  相似文献   

5.
Normal T cell repertoire contains regulatory T cells that control autoimmune responses in the periphery. One recent study demonstrated that CD4(+)CD25(+) T cells were generated from autoreactive T cells without negative selection. However, it is unclear whether, in general, positive selection and negative selection of autoreactive T cells are mutually exclusive processes in the thymus. To investigate the ontogeny of CD4(+)CD25(+) regulatory T cells, neo-autoantigen-bearing transgenic mice expressing chicken egg OVA systemically in the nuclei (Ld-nOVA) were crossed with transgenic mice expressing an OVA-specific TCR (DO11.10). Ld-nOVA x DO11.10 mice had increased numbers of CD4(+)CD25(+) regulatory T cells in the thymus and the periphery despite clonal deletion. In Ld-nOVA x DO11.10 mice, T cells expressing endogenous TCR alpha beta chains were CD4(+)CD25(-) T cells, whereas T cells expressing autoreactive TCR were selected as CD4(+)CD25(+) T cells, which were exclusively dominant in recombination-activating gene 2-deficient Ld-nOVA x DO11.10 mice. In contrast, in DO11.10 mice, CD4(+)CD25(+) T cells expressed endogenous TCR alpha beta chains, which disappeared in recombination-activating gene 2-deficient DO11.10 mice. These results indicate that part of autoreactive T cells that have a high affinity TCR enough to cause clonal deletion could be positively selected as CD4(+)CD25(+) T cells in the thymus. Furthermore, it is suggested that endogenous TCR gene rearrangement might critically contribute to the generation of CD4(+)CD25(+) T cells from nonautoreactive T cell repertoire, at least under the limited conditions such as TCR-transgenic models, as well as the generation of CD4(+)CD25(-) T cells from autoreactive T cell repertoire.  相似文献   

6.
Allelic variants of MHC molecules expressed on cells of the thymus affect the selection and the specificity of the T cell repertoire. The selection is based on either the direct recognition by the TCR of the MHC molecules, or the recognition of a complex determinant formed by self-peptides bound to MHC molecules. In an analysis of the T cell repertoire in bone marrow chimeras that express allelic forms of MHC class II molecules in the thymus epithelium, we find that amino acid substitutions that are predicted to affect peptide binding influence the selection of the T cell repertoire during thymic selection.  相似文献   

7.
The T cell repertoire is shaped in the thymus through positive and negative selection. Thus, data about the mature repertoire may be used to infer information on how TCR generation and selection operate. Assuming that T cell selection is affinity driven, we derive the quantitative constraints that the parameters driving these processes must fulfill to account for the experimentally observed levels of alloreactivity, self MHC restriction and the frequency of cells recognizing a given foreign Ag. We find that affinity-driven selection is compatible with experimental estimates of these latter quantities only if 1) TCRs see more peptide residues than MHC polymorphic residues, 2) the majority of positively selected clones are deleted by negative selection, 3) between 1 and 3.6 clonal divisions occur on average in the thymus after completion of TCR rearrangement, and 4) selection is driven by 103-105 self peptides.  相似文献   

8.
The T cell repertoire is shaped by the processes of positive and negative selection. During development, the TCR binds self peptide-MHC complexes in the thymus, and the kinetics of this interaction are thought to determine the thymocyte's fate. For development of CD8(+) T cells, the data supporting such a model have been obtained using fetal thymic organ culture. To confirm the fidelity of this model in vivo, we studied development of OT-I TCR-transgenic mice that expressed different individual K(b) binding peptides in thymic epithelial cells under the control of the human keratin 14 promoter. We used a system that allowed TAP-independent expression of the peptide-MHC complex, such that the ability of given peptides to restore positive selection in TAP(o) mice could be assessed. We found that transgenic expression of a TCR antagonist peptide (E1) in vivo efficiently restored positive selection of OT-I T cells in TAP(o) mice. An unrelated transgenic peptide (SIY) did not restore selection of OT-I T cells, nor did the E1-transgenic peptide restore selection of an unrelated receptor (2C), showing that positive selection is peptide specific in vivo, as observed in organ cultures. Neither E1 nor SIY transgenes increased the polyclonal CD8 T cell repertoire size in non-TCR-transgenic animals, arguing that single class I binding peptides do not detectably affect the size of the CD8 T cell repertoire when expressed at low levels. We also observed that OT-I T cells selected in TAP(o)-E1 mice were functional in their response to Ag; however, there was a lag in this response, suggesting that the affinity of the TCR interaction with MHC-self peptide can result in fine-tuning of the T cell response.  相似文献   

9.
Efficient positive selection of a broad repertoire of T cells is dependent on the presentation of a diverse array of endogenous peptides on MHC molecules in the thymus. It is unclear, however, whether the development of individual TCR specificities is influenced by the abundance of their selecting ligands. To examine this, we analyzed positive selection in a transgenic mouse carrying a TCR specific for the human CLIP:I-Ab class II complex. We found that these mice exhibit significantly reduced CD4+ T cell development compared with two other transgenic mice carrying TCRs selected on I-Ab. Moreover, many of the selected cells in these mice express endogenous and transgenic receptors as a consequence of dual TCRalpha expression. Dramatic enhancement of the selection efficiency is observed, however, when fewer transgenic cells populate the thymus in mixed bone marrow chimeras. These results suggest that positive selection is limited by the availability of selecting peptides in the thymus. This becomes apparent when large numbers of thymocytes compete for such peptides in TCR transgenic animals. Under such conditions, thymocytes appear to undergo further TCRalpha gene rearrangement to produce a receptor that may be selected more efficiently by other thymic self-peptides.  相似文献   

10.
High avidity ligation of the TCR induces negative selection in the thymus and can also induce apoptosis of peripheral T cells. Costimulation through CD28 enhances T cell activation and facilitates negative selection in the thymus, but the role of CD28 in peripheral T cell deletional tolerance has not been investigated. We used 2C CD28 wild-type and 2C CD28-deficient strains to assess the effects of CD28 and TCR avidity on peripheral T cell expansion and apoptosis. We compared the activation, division, expansion, and apoptosis of CD28(+/+) and CD28(-/-) 2C cells in response to self-Ag (K(b)), alloantigens with intermediate (K(bm3)), high (L(d)), or very high (L(d) + QL9 peptide) avidity. With intermediate avidity alloantigen, the CD28 signal enhanced T cell activation and expansion. However, when T cells encountered high avidity alloantigen, the CD28 signal reduced T cell expansion and increased apoptosis. These results indicate that the CD28 signal can down-regulate peripheral T cell responses by increasing apoptosis when TCR ligation exceeds a critical threshold.  相似文献   

11.
In the developing thymus, strong T cell receptor (TCR) activation by self-antigensinduces negative selection and weak TCR activation induces positive selection. Bothprocesses are mediated by Ca2+ signals, raising the question of how a single secondmessenger like Ca2+ can mediate such diverse cell fates. Recent findings indicate thatgraded TCR activation signals are encoded in distinct patterns of Ca2+ elevation. Theanti-apoptotic protein Bcl-2 discriminates between these Ca2+ signaling patterns,selectively inhibiting pro-apoptotic Ca2+ signals induced by strong TCR activationwithout suppressing pro-survival Ca2+ signals induced by weak TCR activation.  相似文献   

12.
T cells undergo negative selection in the thymus to eliminate potentially autoreactive cells. The signals generated through the alphabeta TCR following receptor interactions with peptide/MHC complexes in the thymus control these selection processes. Following receptor ligation, a fraction of the TCR zeta subunit appears as two distinct tyrosine-phosphorylated forms of 21 and 23 kDa (p21 and p23). Previous data have reported elevated levels of p21 in some murine models of autoimmunity. We have examined the contributions of both the p21 and p23 to T cell negative selection in the HY TCR-transgenic system using ITAM-substituted TCR zeta and CD3 epsilon transgenic mice. Expression of just p21, in the absence of p23, partially impairs negative selection of self-reactive HY-specific T cells. This results in the emergence of potentially autoreactive peripheral T cells and an elevated population of CD11b(+)B220(+) B cells in the spleen. These data clearly identify a specific and unique role for p21 during negative selection.  相似文献   

13.
The thymus produces self-tolerant functionally competent T cells. This process involves the import of multipotent haematopoietic progenitors that are then signalled to adopt the T cell fate. Expression of T cell-specific genes, including those encoding the T cell receptor (TCR), is followed by positive and negative selection and the eventual export of mature T cells. Significant progress has been made in elucidating the signals that direct progenitor cell trafficking to, within and out of the thymus. These advances are the subject of this Review, with a particular focus on the role of reciprocal cooperative and regulatory interactions between TCR- and chemokine receptor-mediated signalling.  相似文献   

14.
Myelin basic protein (MBP)-specific T cells are thought to play a role in the development of multiple sclerosis. MBP residues 111-129 compose an immunodominant epitope cluster restricted by HLA-DRB1*0401. The sequence of residues 111-129 of MBP (MBP(111-129)) differs in humans (MBP122:Arg) and mice (MBP122:Lys) at aa 122. We previously found that approximately 50% of human MBP(111-129) (MBP122:Arg)-specific T cell clones, including MS2-3C8 can proliferate in response to mouse MBP(111-129) (MBP122:Lys). However, the other half of T cell clones, including HD4-1C2, cannot proliferate in response to MBP(111-129) (MBP122:Lys). We found that MBP(111-129) (MBP122:Lys) is an antagonist for HD4-1C2 TCR, therefore, MS2-3C8 and HD4-1C2 TCRs are agonist- and antagonist-specific TCRs in mice, respectively. Therefore, we examined the development of HD4-1C2 TCR and MS2-3C8 TCR transgenic (Tg) T cells in the thymus and periphery. We found that dual TCR expression exclusively facilitates the development of MBP(111-129) TCR Tg T cells in the periphery of HD4-1C2 TCR/HLA-DRB1*0401 Tg mice although it is not required for their development in the thymus. We also found that MS2-3C8 TCR Tg CD8(+) T cells develop along with MS2-3C8 TCR Tg CD4(+) T cells, and that dual TCR expression was crucial for the development of MS2-3C8 TCR Tg CD4(+) and CD8(+) T cells in the thymus and periphery, respectively. These results suggest that thymic and peripheral development of MBP-specific T cells are different; however, dual TCR expression can facilitate their development.  相似文献   

15.
It is well known that T cell differentiation and maturation in the thymus is tightly controlled at multiple checkpoints. However, the molecular mechanism for the control of this developmental program is not fully understood. A number of protein tyrosine kinases, such as Zap-70, Lck, and Fyn, have been shown to promote signals required for thymocyte development, whereas a tyrosine phosphatase Src homology domain-containing tyrosine phosphatase (Shp)1 has a negative effect in pre-TCR and TCR signaling. We show in this study that Shp2, a close relative of Shp1, plays a positive role in T cell development and functions. Lck-Cre-mediated deletion of Shp2 in the thymus resulted in a significant block in thymocyte differentiation/proliferation instructed by the pre-TCR at the beta selection step, and reduced expansion of CD4(+) T cells. Furthermore, mature Shp2(-/-) T cells showed decreased TCR signaling in vitro. Mechanistically, Shp2 acts to promote TCR signaling through the ERK pathway, with impaired activation of ERK kinase observed in Shp2(-/-) T cells. Thus, our results provide physiological evidence that Shp2 is a common signal transducer for pre-TCR and TCR in promoting T cell maturation and proliferation.  相似文献   

16.
The Tec family tyrosine kinase Itk is critical for efficient signaling downstream of the TCR. Biochemically, Itk is directly phosphorylated and activated by Lck. Subsequently, Itk activates phospholipase C-gamma1, leading to calcium mobilization and extracellular signal-regulated kinase/mitogen-activated protein kinase activation. These observations suggested that Itk might play an important role in positive selection and CD4/CD8 lineage commitment during T cell development in the thymus. To test this, we crossed Itk-deficient mice to three lines of TCR transgenics and analyzed progeny on three different MHC backgrounds. Analysis of these mice revealed that fewer TCR transgenic T cells develop in the absence of Itk. In addition, examination of multiple T cell development markers indicates that multiple stages of positive selection are affected by the absence of Itk, but the T cells that do develop appear normal. In contrast to the defects in positive selection, CD4/CD8 lineage commitment seems to be intact in all the TCR transgenic itk(-/-) lines tested. Overall, these data indicate that altering TCR signals by the removal of Itk does not affect the appropriate differentiation of thymocytes based on their MHC specificity, but does impact the efficiency with which thymocytes complete their maturation process.  相似文献   

17.
The thymus imparts a developmental imprint upon T cells, screening beneficial and self-tolerant T cell receptor (TCR) specificities. Cortical thymic epithelial cells (CTEC) present self-peptide self-MHC complexes to thymocytes, positively selecting those with functional TCRs. Importantly, CTEC generate diverse self-peptides through highly specific peptide processing. The array of peptides utilized for positive selection appears to play a key role in shaping TCR repertoire and influencing T cell functionality. Whilst self-peptide diversity influences T cell development, the precise source of proteins generating such self-peptide arrays remains unknown, the abundance of apoptotic thymocytes failing thymic selection may provide such a pool of self-proteins. In relation to this notion, whilst it has been previously demonstrated that CTEC expression of the endocytic receptor CD205 facilitates binding and uptake of apoptotic thymocytes, the possible role of CD205 during intrathymic T cell development has not been studied. Here, we directly address the role of CD205 in normal thymocyte development and selection. Through analysis of both polyclonal and monoclonal transgenic TCR T-cell development in the context of CD205 deficiency, we demonstrate that CD205 does not play an overt role in T cell development or selection.  相似文献   

18.
During development in the thymus, each T lymphocyte is equipped with one, essentially unique, T cell receptor (TCR)-specificity. Due to its random nature, this process inevitably also leads to the emergence of potentially dangerous T lymphocytes that may recognize ‘self.’ Nevertheless, autoimmune tissue destruction, the cause of diseases such as multiple sclerosis and diabetes, is the exception rather than the rule. This state of immunological self-tolerance is to a large degree based upon a process called ‘negative selection’: prior to joining the circulating lymphocyte pool, immature T cells test their receptor on self-antigens within the thymic microenvironment, and TCR engagement at this immature stage elicits an apoptotic suicide program. We now find evidence that macroautophagy supports the tolerogenic presentation of self-antigens in the thymus.  相似文献   

19.
T cell development in the thymus involves a series of TCR-mediated control points including TCR-beta selection and positive and negative selection. Approximately half of the thymic sojourn is spent in the medulla, where thymocytes undergo final maturation before emigrating to the periphery. Although it is acknowledged that thymic emigration is an active process, relatively little is known about how this is regulated, why it takes so long, and whether TCR-mediated signaling can influence this step. Using wild-type and TCR transgenic mice, we found that Ag injected i.v. or intrathymically led to a striking reduction in the number of recent thymic emigrants (RTE) in the periphery. This was caused by inhibition of T cell export rather than peripheral deletion, because a cohort of RTE that was already released before in vivo Ag challenge was not depleted, and similar results were observed in Bim-deficient mice, which have impaired T cell deletion. Within the thymus, the loss of RTE was associated with retention of medullary thymocytes rather than increased negative selection. In addition to Ag-specific inhibition of export, some TCR-independent suppression of emigration was also observed that appeared to be partly the result of the inflammatory cytokine TNF. Thus, in addition to its accepted role in intrathymic selection events, TCR signaling can also play an important role in the regulation of thymic emigration.  相似文献   

20.
We have used a panel of murine mAb against chicken TCR and associated molecules to study the effect of cyclosporin A (CsA) on the ontogeny of the different sublineages of T cells. After injection of CsA (20 mg/kg/day from day 0 to 20) we observed a significant suppression of the normal maturation of the TCR2 (alpha beta TCR) cells in their transition from cortical CD4+CD8+ thymocytes to the mature single positive cells in the thymus medulla. The TCR3 subpopulation, a distinct form of alpha beta-like TCR in chickens, was inhibited from initially developing within the cortex by CsA, indicating that the TCR3 subpopulation is functionally distinct from the TCR2+ cells. In contrast, the maturation and peripheral emigration of TCR1 (gamma delta TCR) cells was unaffected by CsA treatment. Mature splenic T cells sorted for either TCR1+ or TCR2+ subsets were equally sensitive to CsA blockade of Con A-stimulated mitogenesis, indicating that there is no inherent difference in CsA sensitivity between these sublineages. Furthermore, no difference was detected in the expression of class II MHC Ag in thymi of birds treated with olive oil vs CsA. Inasmuch as the mechanism of CsA action appears to involve inhibition of TCR initiated signal transduction for lymphokine synthesis, these data indicate that a similar signaling is involved in thymic repertoire selection for TCR2. The lack of an effect on TCR1 cell maturation suggests that the TCR1 repertoire may not undergo selection in the thymus as do TCR2+ cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号