共查询到20条相似文献,搜索用时 15 毫秒
1.
Maria B. Bagh Arpan K. Maiti Sirsendu Jana Kalpita Banerjee Arun Roy 《Free radical research》2013,47(6):574-581
Dopamine oxidation products such as H2O2 and reactive quinones have been held responsible for various toxic actions of dopamine, which have implications in the aetiopathogenesis of Parkinson's disease. This study has shown that N-acetylcysteine (0.25–1 mm) is a potent scavenger of both H2O2 and toxic quinones derived from dopamine and it further prevents dopamine mediated inhibition of Na+,K+-ATPase activity and mitochondrial respiratory chain function. The quinone scavenging ability of N-acetylcysteine is presumably related to its protective effect against dopamine mediated inhibition of mitochondrial respiratory chain activity. However, both H2O2 scavenging and quinone scavenging properties of N-acetylcysteine probably account for its protective effect against Na+,K+-ATPase inhibition induced by dopamine. The results have important implications in the neuroprotective therapy of sporadic Parkinson's disease since inactivation of mitochondrial respiratory activity and Na+,K+-ATPase may trigger intracellular damage pathways leading to the death of nigral dopaminergic neurons. 相似文献
2.
Tsakiris S Marinou K Schulpis KH 《Zeitschrift für Naturforschung. C, Journal of biosciences》2002,57(9-10):939-943
To evaluate the effect of galactose metabolic disorders on the brain Na+,K+-ATPase in suckling rats. Separate preincubations of various concentrations (1-16 mM) of the compounds galactose-1-phosphate (Gal-1-P) and galactitol (galtol) with whole brain homogenates at 37 degrees C for 1 h resulted in a dose dependent inhibition of the enzyme whereas the pure enzyme (from porcine cerebral cortex) was stimulated. Glucose-1-phosphate (Glu-1-P) or galactose (Gal) stimulated both rat brain Na+,K+-ATPase and pure enzyme. A mixture of Gal-1-P (2 mM), galtol (2 mM) and Gal (4 mM), concentrations commonly found in untreated patients with classical galactosemia, caused a 35% (p < 0.001) rat brain enzyme inhibition. Additionally, incubation of a mixture of galtol (2 mM) and Gal (1 mM), which is usually observed in galactokinase deficient patients, resulted in a 25% (p < 0.001) brain enzyme inactivation. It is suggested that: a) The indirect inhibition of the brain Na+,K+-ATPase by Gal-1-P should be due to the presence of the epimer Gal and phosphate and that the pure enzyme direct activation by Gal-1-P and Glu-1-P to the presence of phosphate only. b) The observed brain Na+,K+-ATPase inhibitions in the presence of toxic concentrations of Gal-1-P and/or galtol could modulate the neural excitability, the metabolic energy production and the catecholaminergic and serotoninergic system. 相似文献
3.
Khan FH Sen T Maiti AK Jana S Chatterjee U Chakrabarti S 《Biochimica et biophysica acta》2005,1741(1-2):65-74
Several studies on mitochondrial functions following brief exposure (5-15 min) to dopamine (DA) in vitro have produced extremely variable results. In contrast, this study demonstrates that a prolonged exposure (up to 2 h) of disrupted or lysed mitochondria to DA (0.1-0.4 mM) causes a remarkable and dose-dependent inhibition of complex I and complex IV activities. The inhibition of complex I and complex IV activities is not prevented by the antioxidant enzyme catalase (0.05 mg/ml) or the metal-chelator diethylenetriaminepentaacetic acid (0.1 mM) or the hydroxyl radical scavengers like mannitol (20 mM) and dimethyl sulphoxide (20 mM) indicating the non-involvement of *OH radicals and Fenton's chemistry in this process. However, reduced glutathione (5 mM), a quinone scavenger, almost completely abolishes the DA effect on mitochondrial complex I and complex IV activities, while tyrosinase (250 units/ml) which catalyses the conversion of DA to quinone products dramatically enhances the former effect. The results suggest the predominant involvement of quinone products instead of reactive oxygen radicals in long-term DA-mediated inactivation of complex I and complex IV. This is further indicated from the fact that significant amount of quinones and quinoprotein adducts (covalent adducts of reactive quinones with protein thiols) are formed during incubation of mitochondria with DA. Monoamine oxidase A (MAO-A) inhibitor clorgyline also provides variable but significant protection against DA induced inactivation of complex I and complex IV activities, presumably again through inhibition of quinoprotein formation. Mitochondrial ability to reduce tetrazolium dye 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) in presence of a respiratory substrate like succinate (10 mM) is also reduced by nearly 85% following 2 h incubation with 0.4 mM DA. This effect of DA on mitochondrial function is also dose-dependent and presumably mediated by quinone products of DA oxidation. The mitochondrial dysfunction induced by dopamine during extended periods of incubation as reported here have important implications in the context of dopaminergic neuronal death in Parkinson's disease (PD). 相似文献
4.
R I Potapenko 《Ukrainski? biokhimicheski? zhurnal》1986,58(1):29-34
The Na+, K+-ATPase activity in the homogenate and in subcellular fractions of different parts of the brain of adult and old rats was studied in comparison. The content of cholesterol in the above fractions was also determined. In old age the Na+, K+-ATPase activity in the homogenate and microsomal fraction of the cerebral hemispheres' cortex decreases, while the Mg2+-ATPase activity in the cortex microsomal fraction increases. The age-related Na+, K+- and Mg2+-ATPase activity in the myelin of the stem in the synaptic plasma membranes of hemispheres and the brain stem remains unchanged whereas in the myelin fraction of hemispheres it grows. The content of cholesterol in the brain of old rats as compared with adult ones increases in the microsomal fraction and remains unchanged in synaptic membranes. The possible role of age-related modification of lipid component of plasma membranes in the above changes of Na+, K+-ATPase activity is discussed. 相似文献
5.
《Life sciences》1993,52(24):PL273-PL278
3H-ouabain binding and ouabain-inhibitable 86Rb+ (K+) uptake were investigated as a means to identify a third isoform of Na+, K+-ATPase in crude synaptosome preparations. The specific binding of low concentrations (10 nM and 1 uM) of 3H-ouabain, in crude synaptosome preparations, was markedly inhibited by K+ (0.5–5 mM). Accordingly, 86Rb+ (K+) uptake, in the presence of 5 mM K+ was not sensitive to inhibition by low concentrations (10−11–10−7 M) of ouabain. Higher concentrations (10−6–10−2.6 M) of ouabain resulted in a biphasic inhibition of K+ uptake, which distinguished the activities of the presumed alpha 2 and alpha 1 isozymes of Na+, K+-ATPase. Reduction of K+ (1.25 mM and 0.5 mM) in the incubation, resulted in the observation of a third component of ouabain- sensitive K+ uptake. This Na+, K+-ATPase activity, which was defined, pharmacologically, as very sensitive (VS) to ouabain, exhibited IC50s of 3.6 nM and 92 nM at 1.25 mM K+ and 0.5 mM K+, respectively. Inhibition of ouabain binding and VS-dependent K+ uptake, at a high, physiological cocentration (5 mM) of K+, suggests that VS may be an inactive isoform of brain Na+, K+-ATPase under resting conditions. 相似文献
6.
7.
The effect of thyroid hormones (T4, T3 and reverse T3) on rat renal Na+,K+-ATPase activity was investigated by a cytochemical technique. T3 caused stimulation of Na+,K+-ATPase activity in the renal medulla but not in the renal cortex. There was a peak in enzyme activity after cultured renal segments had been exposed to T3 for 11 min and this time of maximal stimulation did not vary with the concentration of T3. A rectilinear response in Na+,K+-ATPase activity was observed over T3 concentration range 10 pmol l-1 to 100 nmol l-1; at higher T3 concentrations, Na+,K+-ATPase activity was inhibited. The enzyme response was totally blocked by specific T3 antiserum. Addition of T4 and reverse T3 (100 fmol l-1 -1 mmol l-1) failed to stimulate Na+,K+-ATPase activity in any part of the kidney. Plasma (neat and diluted 1:10) stimulated the enzyme in parallel with the dose response curve and the stimulatory effect was abolished by prior addition of specific T3 antiserum. 相似文献
8.
The Na+, K+-ATPase activity and its response to vanadate inhibition was investigated in cerebral cortex homogenates of 7-, 12- and 18-day-old rats. The enzyme was inhibited by vanadate in a dose-dependent manner in all these age groups. Furthermore, there was a different sensitivity towards vanadate during postnatal development; the concentration of V+5 needed for 50% inhibiton of Na+, K+-ATPase was 1.1×10–6M, 2×10–7M and 4.4×10–7M for 7-, 12- and 18-day-old rats, respectively. It is suggested that the different sensitivity of Na+, K+-ATPase towards vanadate inhibition during postnatal development might be due to age-dependent changes in the ratio of various cell types.Special Issue dedicated to Dr. O. H. Lowry. 相似文献
9.
The diverse damaging effects of dopamine (DA) oxidation products on brain subcellular components including mitochondrial electron transport chain have been implicated in dopaminergic neuronal death in Parkinson's disease. It has been shown in this study that DA (50-200 μM) causes dose-dependent inhibition of Na+, K+-ATPase activity of rat brain crude synaptosomal-mitochondrial fraction during in vitro incubation up to 2 h. The enzyme inactivation is prevented by catalase and the metal-chelator (diethylenetriamine penta-acetic acid) but not by superoxide dismutase or hydroxyl-radical scavengers like mannitol and dimethylsulphoxide (DMSO). Further, reduced glutathione and cysteine, markedly prevent DA-mediated inactivation of Na+, K+-ATPase. Under similar conditions of incubation, DA (200 μM) leads to the formation of quinoprotein adducts (protein-cysteinyl catechol) with synaptosomal-mitochondrial proteins and the phenomenon is also prevented by glutathione (5 mM) or cysteine (5 mM).
The available data imply that the inactivation of Na+, K+-ATPase in this system involves both H2O2 and metal ions. The reactive quinones by forming adducts with protein thiols also probably contribute to the process, since reduced glutathione and cysteine which scavenge quinones from the system protect Na+, K+-ATPase from DA-mediated damage. The inactivation of neuronal Na+, K+-ATPase by DA may give rise to various toxic sequelae with potential implications for dopaminergic cell death in Parkinson's disease. 相似文献
The available data imply that the inactivation of Na+, K+-ATPase in this system involves both H2O2 and metal ions. The reactive quinones by forming adducts with protein thiols also probably contribute to the process, since reduced glutathione and cysteine which scavenge quinones from the system protect Na+, K+-ATPase from DA-mediated damage. The inactivation of neuronal Na+, K+-ATPase by DA may give rise to various toxic sequelae with potential implications for dopaminergic cell death in Parkinson's disease. 相似文献
10.
R I Potapenko 《Ukrainski? biokhimicheski? zhurnal》1988,60(1):61-64
The study of albino rats aged 6-7 months and 25-27 months revealed the age-related increase of maximal activity (V) of Na+, K+-ATPase of synaptosomal plasma membranes, separated from the cerebral cortex, while the level of Km remained stable. It is shown that in old rats as compared to the adult ones the affinity of Na+, K+-ATPase to sodium ions increases and the character of the ATP hydrolysis schedule changes in the presence of different ration of ions-activators. There are no significant changes in the inhibiting effect of strophantidin K on Na+, K+-ATPase activity of synaptosomal plasma membranes. 相似文献
11.
Tsakiris S Angelogianni P Schulpis KH Behrakis P 《Zeitschrift für Naturforschung. C, Journal of biosciences》2000,55(3-4):271-277
The aim of this study was to investigate whether the preincubation of brain homogenates with L-phenylalanine (Phe), L-cysteine (Cys) or reduced glutathione (GSH) could reverse the free radical effects on Na+,K+-ATPase activity. Two well established systems were used for the production of free radicals: 1) FeSO4 (84 microM) plus ascorbic acid (400 microM) and 2) FeSO4, ascorbic acid and H2O2 (1 mM) for 10 min at 37 degrees C in homogenates of adult rat whole brain. Changes in brain Na+,K+-ATPase activity and total antioxidant status (TAS) were studied in the presence of each system separately, with or without Phe, Cys or GSH. TAS value reflects the amount of free radicals and the capacity of the antioxidant enzymes to limit the free radicals in the homogenate. Na+,K+-ATPase was inhibited by 35-50% and TAS value was decreased by 50-60% by both systems of free radical production. The enzymatic inhibition was completely reversed and TAS value increased by 150-180% when brain homogenates were preincubated with 0.83 mM Cys or GSH. However, this Na+,K+-ATPase inhibition was not affected by 1.80 mM Phe, which produced a 45-50% increase in TAS value. It is suggested that the antioxidant action of Cys and GSH may be due to the binding of free radicals to sulfhydryl groups of the molecule, so that free radicals cannot induce Na+,K+-ATPase inhibition. Moreover, Cys and GSH could regulate towards normal values the neural excitability and metabolic energy production, which may be disturbed by free radical action on Na+,K+-ATPase. 相似文献
12.
The effect of L-arginine on the Na+,K+-ATPase activity in rat aorta endothelium was studied at its physiological concentrations in the range of 10–6-10–3 M. The enzyme activity was 35.5% increased by low concentrations of L-arginine (10–5 M) and its activity was 32.3-37.1% decreased at the L-arginine concentrations of 10–4-10–3 M. A similar inhibition (by 34.5-42.8%) was also found in the presence of a NO-donor nitroglycerol (10–4-10–3 M). An optical isomer of L-arginine, D-arginine, at the concentrations of 10–5 M also increased the enzyme activity by 37.1%, but its inhibiting effect was much less pronounced and was 15.7% at the D-arginine concentration of 10–3 M. An inhibitor of NO-synthase, L-NAME (NG-nitroarginine, methyl ester), failed to inhibit Na+,K+-ATPase. However, the presence of L-NAME abolished the inhibition of Na+,K+-ATPase by high concentrations of L-arginine. Thus, the effect of L-arginine on the endothelial Na+-pump depended on its concentration, and it is suggested that the enzyme inhibition by high concentrations of L-arginine should be associated with activation of the endogenous synthesis of NO. 相似文献
13.
J Folbergrová 《Physiologia Bohemoslovaca》1985,34(4):367-372
This study has compared the effect of freezing in situ and decapitation without freezing on the Na+,K+-ATPase activity in mouse cerebral cortex homogenates under otherwise comparable conditions. The Na+,K+-ATPase activity was substantially influenced by the sample preparation; a twofold value was obtained for frozen samples as compared to that in fresh samples. Not only basal activity, but also the sensitivity of the enzyme towards vanadate inhibition depended on tissue treatment; lesser inhibition was observed in frozen samples. These findings suggest the possible implication of altered enzyme characteristics due to sample preparation while studying the influence of various other factors on enzyme activity. 相似文献
14.
The present study reports on the effects of dopamine on sodium transepithelial transport and Na+,K+-ATPase activity in Caco-2 cells, a human epithelial intestinal cell line which undergoes enterocyte differentiation in culture, and jejunal epithelial cells from 20 day old Wistar rats. Addition of amphotericin B to the mucosal side stimulated Isc in a concentration dependent manner (Caco-2 cells, EC50=0.9 [0.5, 1.7] microM; rat jejunum, EC50=7.4 [0.8; 70.1] microM). The presence of 1 microM dopamine did not change the effect of amphotericin B in Caco-2 cells, but produced a significant (P<0.05) decrease in the maximal effect of amphotericin B in the rat jejunum. Dopamine (1 microM), added to the serosal side, did not change the Isc profile in Caco-2 cells, but produced a significant increase in the rat jejunum. This effect was antagonized by SKF 83566 (1 microM), but not S-sulpiride (1 microM), and was mimicked by SKF 38393 (10 nM), but not by quinerolane (10 nM). Basal Na+,K+-ATPase activity (in nmol Pi mg protein(-1) min(-1)) in Caco-2 cells (49.5+/-0.2) was similar to that observed in isolated rat jejunal epithelial cells (52.3+/-3.4). Dopamine (1 microM) significantly (P<0.05) decreased Na+,K+-ATPase activity in rat jejunal epithelial cells, but failed to inhibit Na+,K+-ATPase in Caco-2 cells. This effect of dopamine was antagonized by SKF 83566 (1 microM), but not S-sulpiride (1 microM), and was mimicked by SKF 38393 (10 nM), but not by quinerolane (10 nM). The specific binding of [3H]-Sch 23390 to the rat intestinal mucosa was saturable with an apparent dissociation constant (KD) of 2.4 (0.4; 4.5) nM and maximum receptor density of 259.8+/-32.6 fmol/mg protein. No significant specific binding of [3H]-Sch 23390 was observed in membranes from Caco-2 cells. In conclusion, the results obtained show that D1-like receptor mediated effects of dopamine in the rat jejunum on sodium absorption are absent in Caco-2 cells, most probably because this cell line does not express D1-like dopamine receptors, which ultimately are responsible for the inhibitory effect of the amine upon intestinal Na+,K+-ATPase. 相似文献
15.
Georgina Rodríguez de Lores Arnaiz 《Neurochemical research》1990,15(3):289-294
Previous evidence from this laboratory indicated that catecholamines and brain endogenous factors modulate Na+, K+-ATPase activity of the synaptosomal membranes. The filtration of a brain total soluble fraction through Sephadex G-50 permitted the separation of two fractions-peaks I and II-which stimulated and inhibited Na+, K+-ATPase, respectively (Rodríguez de Lores Arnaiz and Antonelli de Gomez de Lima, Neurochem. Res.11, 1986, 933). In order to study tissue specificity a rat kidney total soluble was fractionated in Sephadex G-50 and kidney peak I and II fractions were separated; as control, a total soluble fraction prepared from rat cerebral cortex was also processed. The UV absorbance profile of the kidney total soluble showed two zones and was similar to the profile of the brain total soluble. Synaptosomal membranes Na+, K+- and Mg2+-ATPases were stimulated 60–100% in the presence of kidney and cerebral cortex peak I; Na+, K+-ATPase was inhibited 35–65% by kidney peak II and 60–80% by brain peak II. Mg2+-ATPase activity was not modified by peak II fractions. ATPases activity of a kidney crude microsomal fraction was not modified by kidney peak I or brain peak II, and was slightly increased by kidney peak II or brain peak I. Kidney purified Na+, K+-ATPase was increased 16–20% by brain peak I and II fractions. These findings indicate that modulatory factors of ATPase activity are not exclusive to the brain. On the contrary, there might be tissue specificity with respect to the enzyme source. 相似文献
16.
Gubs'kyĭ IuI Ianits'ka LV Velykyĭ MM Kuchmerovs'ka TM 《Ukrainski? biokhimicheski? zhurnal》2004,76(6):106-110
Alterations of Na+,K+-ATPase activity and serotoninergic system functioning were investigated in brain synaptosomes fractions of rats under experimental acute 1,2-dichloroethane (DChE) intoxication. It was shown that Na+,K+-ATPase activity was markedly increased (by 41,8%) in a period of 24 h after DChE intoxication and decreased (by 27%) after 48 h intoxication. The level of [2-14C]-serotonin uptake by synaptosomes was progressively diminished after 24 and 48 h after DChE injection whereas the activity of monoamine uptake proved to be unchanged. Nicotinamide (200 mg/kg of body weight) was administered to rats subjected to DChE 1, 24 and 36 h after poisoning. The treatment of rats with nicotinamide resulted in some normalization of brain synaptosomal Na+, K+-ATPase activity and serotonin uptake controlled at 48 h after DChE intoxication. 相似文献
17.
The effects of phenylalanine (PHE) and its deaminated metabolites phenylpyruvate (PHP), phenyllactate (PHL) and phenylacetate (PHA) on sodium and potassium activated adenosinetriphosphatase (Na+, K+-ATPase) in synaptosomes from rat brain were investigated. At very low concentrations (5–10 M), PHE, PHL and PHA inhibited the activity, while PHP stimulated the activity. At intermediate concentrations (50–100 M), all compounds had no effect, but at higher (0.5–1.0 mM) concentrations they inhibited the enzyme activity. Thus all the compounds tested showed a biphasic effect on the enzyme activity. Hydroxylamine inhibited the Na+, K+-ATPase activity when present alone; simultaneous addition of hydroxylamine and PHE, however, eliminated the inhibitory effects of each other. Reversal of mutual inhibition also occurred in the presence of hydroxylamine and very low (5–10 M) concentrations of PHL or PHA. The inhibitory effects of PHE at all concentrations, and of PHL or PHA at low concentrations, were also eliminated in the presence of EGTA. The data indicate that inhibition of brain membrane Na+, K+-ATPase by PHE and by low concentrations of PHL and PHA may involve metal ions, but that the inhibition by high concentrations of these metabolites must occur by a different mechanism. Since Na+, K+-ATPase plays a central role in neuronal function, and the presence of excess PHE and its deaminated metabolites occurs in brain tissue under conditions of experimentally induced hyperphenylalaninemia and genetic phenylketonuria, the neurologic impairment in experimental and genetic PKU may in part be related to the deleterious effects of these compounds on brain ATPase. 相似文献
18.
Summary We have examined the effect of Na+,K+-ATPase on 3H-triamcinolone acetonide binding capacity of cytosol glucocorticoid receptors from rat brain and liver. Preincubation of the brain or liver cytosol with Na+,K+-ATPase (10 units/ml) at 30 °C resulted in a rapid loss of specific 3H-triamcinolone acetonide binding, with a half-life of approximately 7 min. The ATPase effect could be prevented by the addition of 10–5 M ouabain, or substantially reduced by the omission of Na+,K+ or Mg+2. The cytosol receptor bound with 3H-triamcinolone acetonide was totally resistant to the inactivation by the ATPase. Since there is some evidence that ATP may bind to glucocorticoid receptor, our findings indicate that an ATP-receptor complex may be essential for steroid binding. The effects of the ATPase in the inactivation of the receptor are very similar to those of alkaline phosphatase reported by others. This raises doubts about the proposal based on the phosphatase inactivation that the cytosol glucocorticoid receptor may be phosphorylated. 相似文献
19.
Rapid eye movement sleep deprivation is reported to increase Na+,K+-ATPase activity. This increase was shown earlier to be stimulated by norepinephrine acting on alpha1-adrenoceptor. The involvement of a subtype of alpha1-adrenoceptor and the possible molecular mechanism of action of norepinephrine in increasing the enzyme activity were investigated using receptor agonists and antagonists, as well as stimulants and blockers of signal transduction pathway. It was observed that incubation of the homogenate with cyclic AMP, forskolin, A23187 (a calcium ionophore), or calmodulin alone did not stimulate the Na+,K+-ATPase activity. However, although the spontaneous activity of the Na+,K+-ATPase was not affected by prazosin, WB4101, heparin, W13, or cyclosporin A alone, each of them could prevent the norepinephrine-stimulated increase in the enzyme activity. Based on these results and our previous findings, it is proposed that norepinephrine acted on alpha1A-adrenoceptor and increased intracellular calcium, which in the presence of calmodulin activated a calmodulin-dependent phosphatase, calcineurin. This calcineurin possibly dephosphorylated Na+,K+-ATPase and increased its activity. The physiological significance especially in relation to rapid eye movement sleep deprivation is discussed. 相似文献
20.
Regulation of rat brain (Na+ +K+)-ATPase activity by cyclic AMP 总被引:3,自引:0,他引:3
The interaction between the (Na+ +K+)-ATPase and the adenylate cyclase enzyme systems was examined. Cyclic AMP, but not 5'-AMP, cyclic GMP or 5'-GMP, could inhibit the (Na+ +K+)-ATPase enzyme present in crude rat brain plasma membranes. On the other hand, the cyclic AMP inhibition could not be observed with purified preparations of (Na+ +K+)-ATPase enzyme. Rat brain synaptosomal membranes were prepared and treated with either NaCl or cyclic AMP plus NaCl as described by Corbin, J., Sugden, P., Lincoln, T. and Keely, S. ((1977) J. Biol. Chem. 252, 3854-3861). This resulted in the dissociation and removal of the catalytic subunit of a membrane-bound cyclic AMP-dependent protein kinase. The decrease in cyclic AMP-dependent protein kinase activity was accompanied by an increase in (Na+ +K+)-ATPase activity. Exposure of synaptosomal membranes containing the cyclic AMP-dependent protein kinase holoenzyme to a specific cyclic AMP-dependent protein kinase inhibitor resulted in an increase in (Na+ +K+)-ATPase enzyme activity. Synaptosomal membranes lacking the catalytic subunit of the cyclic-AMP-dependent protein kinase did not show this effect. Reconstitution of the solubilized membrane-bound cyclic AMP-dependent protein kinase, in the presence of a neuronal membrane substrate protein for the activated protein kinase, with a purified preparation of (Na+ +K+)-ATPase, resulted in a decrease in overall (Na+ +K+)-ATPase activity in the presence of cyclic AMP. Reconstitution of the protein kinase alone or the substrate protein alone, with the (Na+ +K+)-ATPase has no effect on (Na+ +K+)-ATPase activity in the absence or presence of cyclic AMP. Preliminary experiments indicate that, when the activated protein kinase and the substrate protein were reconstituted with the (Na+ +K+)-ATPase enzyme, there appeared to be a decrease in the Na+-dependent phosphorylation of the Na+-ATPase enzyme, while the K+-dependent dephosphorylation of the (Na+ +K+)-ATPase was unaffected. 相似文献