首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sulfur oxygenase, sulfite oxidase, adenylyl sulfate reductase, rhodanase, sulfur:Fe(III) oxidoreductase, and sulfite:Fe(III) oxidoreductase were found in cells of aerobic thermoacidophilic bacteria Sulfobacillus sibiricus strains N1 and SSO. Enzyme activity was revealed in cells grown on the medium with elemental sulfur or in the presence of various sulfide elements and concentrates of sulfide ores. The activity of sulfur-metabolizing enzymes depended little on the degree of aeration during bacterial growth.  相似文献   

2.
Living organisms are composed of macromolecules made of hydrogen, carbon, nitrogen, oxygen, phosphorus and sulfur. Much work has been devoted to the metabolism of the first five elements, but much remains to be understood about sulfur metabolism. We review here the situation in Escherichia coli and related bacteria, where more than one hundred genes involved in sulfur metabolism have already been discovered in this organism. Examination of the genome suggests that many more will be found, especially genes involved in regulation, scavenging of sulfur containing molecules and synthesis of coenzymes or prosthetic groups. Furthermore, the involvement of methionine as the universal start of proteins as well as that of its derivative S-adenosylmethionine in a vast variety of cell processes argue in favour of a major importance of sulfur metabolism in all organisms.  相似文献   

3.
The metabolism of sulfide, sulfur, and acetate by Beggiatoa alba was investigated under oxic and anoxic conditions. B. alba oxidized acetate to carbon dioxide with the stoichiometric reduction of oxygen to water. In vivo acetate oxidation was suppressed by sulfide and by several classic respiratory inhibitors, including dibromothymoquinone, an inhibitor specific for ubiquinones. B. alba also carried out an oxygen-dependent conversion of sulfide to sulfur, a reaction that was inhibited by several electron transport inhibitors but not by dibromothymoquinone, indicating that the electrons released from sulfide oxidation were shuttled to oxygen without the involvement of ubiquinones. Intracellular sulfur stored by B. alba was not oxidized to sulfate or converted to an external soluble form under aerobic conditions. On the other hand, sulfur stored by filaments of Thiothrix nivea was oxidized to extracellular soluble oxidation products, including sulfate. Sulfur stored by filaments of B. alba, however, was reduced to sulfide under short-term anoxic conditions. This anaerobic reduction of sulfur was linked to the endogenous oxidation of stored carbon and to hydrogen oxidation.  相似文献   

4.
The relatively high specific sulfite reductase activity of 25 mU/mg protein was found in extracts from Thiobacillus denitrificans. The absorption spectrum of the partially purified enzyme was similar to the siroheme containing sulfite reductases from other sources. It is suggested that the T. denitrificans sulfite reductase may function during the oxidation of reduced sulfur compounds.  相似文献   

5.
Unidentified Listeria -like bacteria, which lack only one of the phenotypic characteristics used to confirm Listeria spp., were isolated from cheese during routine analysis for Listeria monocytogenes . The VIDAS Listeria assay and the Listeria specific PCR or DNA probe assays used did not identify these strains as Listeria species. This group of bacteria was studied for its homogeneity using rep-PCR and PFGE. Sequence analysis of the 16S rRNA gene showed a homology of 94% to established Listeria spp., implicating a closer relationship than that between Listeria spp. and Brochothrix spp.  相似文献   

6.
Sulfur oxidation by phototrophic bacteria   总被引:14,自引:0,他引:14  
  相似文献   

7.
8.
Abstract 23 cheese coryneform bacteria (14 orange, 3 white, and 6 yellow-pigmented) were examined for five enzymes of two branch-point steps in the catabolic pathways of l -phenylalanine and l -tyrosine. Orange cheese coryneforms ( 'Brevibacterium linens' ) catabolized th amino acids by transamination and the benzene ring was cleaved by 3, 4-dihydroxyphenylacetate-2, 3-dioxygenase. Both enzymes appear to be inducible. Yellow and white strains possessed non-inducible low activity of aminotransferase and lacked completely benzene ring cleavage enzymes.  相似文献   

9.
Sulfur metabolism of Bacillus subtilis   总被引:6,自引:0,他引:6  
  相似文献   

10.
Studies on sulfur metabolism in archaea have revealed many novel enzymes and pathways and have advanced our understanding on metabolic processes, not only of the archaea, but of biology in general. A variety of dissimilatory sulfur metabolisms, i.e. reactions used for energy conservation, are found in archaea from both the Crenarchaeota and Euryarchaeota phyla. Although not yet fully characterized, major processes include aerobic elemental sulfur (S(0) ) oxidation, anaerobic S(0) reduction, anaerobic sulfate/sulfite reduction and anaerobic respiration of organic sulfur. Assimilatory sulfur metabolism, i.e. reactions used for biosynthesis of sulfur-containing compounds, also possesses some novel features. Cysteine biosynthesis in some archaea uses a unique tRNA-dependent pathway. Fe-S cluster biogenesis in many archaea differs from that in bacteria and eukaryotes and requires unidentified components. The eukaryotic ubiquitin system is conserved in archaea and involved in both protein degradation and biosynthesis of sulfur-containing cofactors. Lastly, specific pathways are utilized for the biosynthesis of coenzyme M and coenzyme B, the sulfur-containing cofactors required for methanogenesis.  相似文献   

11.
正Sulfur is an essential nutrient for all organisms.It is present in amino acids cysteine and methionine,many co-enzymes and prosthetic groups,sulfolipids,sulfated peptides,and diverse secondary metabolites.Sulfur is taken up by plants as the inorganic oxidized anion sulfate,which is assimilated into the variety of cellular metabolites.Before sulfate can be assimilated,it must be activated by adenylation to adenosine 50-phosphosulfate(APS)by ATP sulfurylase(Fig.1).APS is a branching point of the assimilation:  相似文献   

12.
Mesosomes are unique membranous structures in bacteria. It is recognized that the mesosomes should be involved in several fundamental processes. The structure and behaviour of mesosomes have been studied and largely identified, while new evidences of mesosome function have been strikingly obtained. Our previous studies confirmed that hydrogen peroxide is involved in mesosomes formation during cell injury and cell division processes. Mesosome formation is always accompanied by excessive H2O2 accumulation. Furthermore, our recent data showed that mesosomes could not only enrich the excess H2O2, but also bring the H2O2 outside of the cells injured by antibiotics. It is a possibility that the enrichment of H2O2 in mesosomes might be a mechanism of drug resistance of bacteria. This article describes the bacterial mesosome and its functions as well as the involvement of hydrogen peroxide in mediating these functions.  相似文献   

13.
14.
Lactate metabolism by pediococci isolated from cheese   总被引:1,自引:0,他引:1  
Pediococcus pentosaceus is commonly found among the adventitious microflora of Cheddar cheese. When this organism was incubated with L-(+)-lactate under anaerobic conditions, L-(+)-lactate was rapidly converted to D-(-)-lactate until racemic (DL) lactate was present. Under aerobic conditions this initial reaction was followed by a slower reaction resulting in the use of both lactate isomers and in the production of acetate and CO2. With intact cells the lactate oxidation system had an optimum pH of 5 to 6, depending on the initial lactate concentration. Cells grown anaerobically possessed lactate-oxidizing activity which increased two- to fourfold as sugar was exhausted from the medium. Aerobic growth further increased specific activities. Cheddar cheese was made with the deliberate addition of P. pentosaceus. When the resulting cheese was grated to expose a large surface area to O2, lactate was converted to acetate at a rate which depended on the density of pediococci in the cheese. The lactate oxidation system remained active in cheese which had been ripened for 6 months.  相似文献   

15.
AIMS: Investigation of the autochthonous lactic acid bacteria (LAB) population of the raw milk protected designation of origin Canestrato Pugliese cheese using phenotypic and genotypic methodologies. METHODS AND RESULTS: Thirty phenotypic assays and three molecular techniques (restriction fragment length polymorphism, partial sequencing of the 16S rRNA gene and recA multiplex PCR assay) were applied to the identification of 304 isolates from raw milk Canestrato Pugliese cheese. As a result, 168 of 207 isolates identified were ascribed to genus Enterococcus, 25 to Lactobacillus, 13 to Lactococcus and one to Leuconostoc. More in details among the lactobacilli, the species Lactobacillus brevis and Lactobacillus plantarum were predominant, including 13 and 10 isolates respectively, whereas among the lactococci, Lactococcus lactis subsp.cremoris [corrected] was the species more frequently detected (seven isolates). CONCLUSIONS: Except for the enterococci, phenotypic tests were not reliable enough for the identification of the isolates, if not combined to the genotype-based molecular techniques. The polyphasic approach utilized allowed 10 different LAB species to be detected; thus suggesting the appreciable LAB diversity of the autochthonous microbial population of the Canestrato Pugliese cheese. SIGNIFICANCE AND IMPACT OF THE STUDY: A comprehensive study of the resident raw milk Canestrato Pugliese cheese microbial population has been undertaken.  相似文献   

16.
Recent work in our laboratory has demonstrated that the most common contaminating fungi on different types of cheese are;Penicillium commune, P. nalgiovense, P. solitum, P. discolor, P. roqueforti, P. crustosum, P. nordicum andAspergillus versicolor. On blue cheese a new speciesP. caseifulvum has been discovered as a surface contaminant. A large number of known and unknown metabolites have been described from the above mentioned cheese associated fungi from both synthetic media and real samples. Based on chemotaxonomy our laboratory has discovered thatP. roqueforti should be divided into three species:P. roqueforti (from cheese),P. carneum (from meat) andP. paneum (from bread). SimilarlyP. verrucosum should be divided intoP. verrucosum (from cereals) andP. nordicum (from cheese and meat products). Both species produce ochratoxins, however, only the former species produce citrinin.  相似文献   

17.
Citrate metabolism in anaerobic bacteria   总被引:4,自引:0,他引:4  
Abstract The regulation of anaerobic citrate metabolism is very diverse among different groups of bacteria. In organisms like Streptococcus lactis and Clostridium sporosphaeroides which lack citrate synthase, the activity of its antagonistic enzyme, citrate lyase, need not be regulated. Many anaerobes like Rhodocyclus gelatinosus and Clostridium sphenoides are able to synthesize their own l -glutamate and contain citrate synthase. In these bacteria the activity of citrate metabolizing enzymes which are involved in a cascade system are under strict control. In Rc. gelatinosus activation/inactivation of citrate lyase is controlled by acetylation/deacetylation which is catalyzed by its corresponding regulatory enzymes, citrate lyase ligase and citrate lyase deacetylase. In C. sphenoides inactivation of citrate lyase is accomplished by deacetylation as well as by changing in the enzyme conformation. Activation of citrate lyase is catalyzed by citrate lyase ligase whose activity in addition is modulated by phosphorylation/dephosphorylation. Further, electron transport process also seems to play a role in the inactivation of citrate metabolizing enzymes in enteric bacteria.  相似文献   

18.
Fatty acid metabolism in bacteria   总被引:20,自引:0,他引:20  
  相似文献   

19.
The role of lactic acid bacteria in accelerated cheese ripening   总被引:4,自引:0,他引:4  
Abstract: The ripening of cheese is a slow and consequently an expensive process. The economic advantage of rapid development of more intense cheese flavour in shorter periods of time would be substantial. Lactic acid bacteria play a key role during ripening and can therefore be used as accelerating agents. This review describes the different strategies where lactic acid bacteria or their enzymes were used to reduce the ripening time of cheese. The advantages, limitations and technical feasibility as well as the commercial potential of the different approaches are also considered.  相似文献   

20.
Polyamine metabolism in potassium-deficient bacteria   总被引:3,自引:0,他引:3       下载免费PDF全文
The metabolism of polyamines was studied in K(+)-dependent strains of Escherichia coli. When these stringent organisms were in a medium containing Na(+) instead of K(+), protein synthesis was arrested, but synthesis of ribonucleic acid continued as it would in a relaxed organism. The Na(+) medium inhibited synthesis of spermidine and S-adenosylmethionine. However, the synthesis of putrescine was accelerated at least five- to eightfold. Exogenous ornithine doubled even this rate of putrescine synthesis but did not increase the low level of putrescine synthesis in the K(+) medium. In K(+) or Na(+) media, with or without 0.3 mm arginine, putrescine was derived almost entirely from ornithine via ornithine decarboxylase. Addition of spermidine (5 mm) to a Na(+) culture markedly inhibited putrescine synthesis. The ornithine decarboxylase of an extract of a K(-)-dependent strain prepared at low ionic strength was separated from ribosomes, deoxyribonucleic acid, and associated polyamines by centrifugation, and from many ions by ultrafiltration and fractionation on Sephadex G-100. Addition of Na(+) and K(+) salts to 200 mm was markedly inhibitory. The combined reductions both in synthesis of the inhibitor spermidine and in intracellular ionic strength may explain the in vivo activation of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号