首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Abstract. Changes are described in aquatic vegetation in oligotrophic, groundwater-fed Rhine floodplain streams in Alsace (eastern France), resulting from disturbance. Disturbance factors include changes in nutrients, either permanent ones - effluent from a waste water treatment plant or trout hatcheries - or periodic ones: flooding. Regular inputs of high levels of phosphate and ammonia modified the macrophyte vegetation in these streams. The floristic composition, which was characteristic of oligotrophic waters upstream of the eutrophicated sector, changed to that of a eutrophic situation as originally found downstream. Periodic disturbance by floods which normally occur once a year, irregularly eutrophicates the small streams, causing the development of a mixture of eutrophic and oligotrophic species. Six macrophyte communities are distinguished, indicating different trophic levels. The aquatic vegetation is adapted to the variations of phosphate and ammonia levels. Hence, aquatic macrophytes can be used as bio-indicators of fluctuations in water nutrient levels in relation to the type of disturbance.  相似文献   

4.
Two bioindication scales of the degree of eutrophication based on aquatic macrophyte communities were established in two types of running waters free of organic matter, the one in acidic soft waters (pH 5.5–7.0, conductivity 40–110 S.cm–1), the other in alkaline hard waters (pH 7–8, conductivity 500–900 S.cm–1). We show that the main determining factor of the macrophyte distribution is the nutrient level (trophy), especially the level of phosphate and ammonia. The acidic scale, with increasing pH, includes four stages ranging from oligotrophic to eutrophic level (traces to 300 g.l–1 N-NHinf4p+ and P-PO4 3–), while the alkaline scale at constant pH comprises six stages of a trophic gradient. For the most part, the floristic composition found in the two sequences is different and depends on conductivity and alkalinity variation. However, some species occur in the two scales and may reflect differences in the trophic level, depending on whether the waters are alkaline or acidic. This change of trophic level for these species is discussed.  相似文献   

5.
Phosphorus and nitrogen excretion rates by zooplankton communities from two eutrophic and shallow Dutch lakes were measured in laboratory. The variations in excretion rates in the lakes (May–October) were caused mainly by fluctuation in zooplankton biomass. Mean summer excretion rates (June–September) were 2.4 and 0.9 µg PO4P·1–1·d–1 in Lake Loosdercht and Lake Breukeleveen, respectively. This difference between the lakes was caused mainly by the lower zooplankton biomass in Lake Breukeleveen. The excretion of 2.4 µg PO4P·1–1·d compared with the calculated P-demand of phytoplankton of 8.0 µg PO4P·1–1·d–1 is substantial in the summer (June–September) and far more important than the external P-supply of 0.4 µg P·1–1·d–1 and sediment release of 0.5 µg P·1–1·d–1. Both temperature and composition of zooplankton affected the weight specific excretion rates of the zooplankton community. The weight specific community excretion rates of P and N increased with temperature (exponential model); 1–8 g PO4P·mg–1 zooplankton-C·d–1 and 5–42 µg NH3N·mg–1 zooplankton-C·d–1 (10°C–20°C).  相似文献   

6.
Understanding nutrient uptake and retention in streams remains an important challenge for lotic scientists. In this study a series of pulse and continuous releases of dissolved nutrients were made to shaded and unshaded (reference) reaches of a small lowland stream to determine whether suppression of macrophyte growth by riparian shade impaired nutrient retention. The nutrients were dissolved reactive phosphorus (DRP), total ammoniacal nitrogen (NH4–N) and nitrate nitrogen (NO3–N). Nutrient reductions ranged from 100% of DRP when stream water was anoxic, to 5–10% for NH4–N and NO3–N in the reference reach. Nutrient removals were affected by travel times in each reach. Percentage removals of NH4–N (46 ± 10) and NO3–N (52 ± 14) were higher in the shaded reach than in the swifter moving reference reach (15 ± 8 and 16 ± 10, respectively). DRP (%) removals were 75± 7 and 57 ± 12 for the shaded and reference reaches, respectively. The presence of emergent marginal macrophytes (Persicaria hydropiper) increased stream velocity in the reference reach by reducing the effective channel cross-section area. Shading reduced plant biomass, increased the channel cross-section and lowered velocity in the experimental reach, effecting dramatic reductions in nutrient concentrations over short distances. The opposite effect is more typical for larger, swifter streams having dense stands of submerged macrophytes, where lowering channel plant biomass will cause increased velocities and lower relative nutrient losses. Riparian shade does not necessarily impair nutrient uptake from small streams. Where invasive marginal species such as P. hydropiper dominate headwater streams shade may be beneficial to the protection of downstream waters from eutrophication. Where reduction of nutrient fluxes from small streams is a key objective for protection of downstream waters, active management of streams should seek to increase travel times, allowing greater potential for nutrient uptake. This will need to be weighed against the need for effective drainage in pastoral areas where reduced travel times are usually sought.  相似文献   

7.
1. Globally, freshwater wetlands, including fen waters, are suffering from biodiversity loss due to eutrophication, water shortage and toxic substances, and to mitigate these pressures numerous restoration projects have been launched. Water quality data are generally used to evaluate the chances of reestablishment of aquatic vegetation in fen waters and shallow peat lakes. Here we investigated whether sediment characteristics, which are less prone to fluctuate in time, would result in more reliable predictions. 2. To test if sediment characteristics can indeed be used not only for an easy and early diagnosis of nutrient availability and water quality changes in fen waters, but also for the prognosis of biodiversity response, we recorded the aquatic vegetation and collected surface water, sediment pore water and sediment samples in 145 fen waters in the Netherlands, Ireland and Poland. 3. Endangered macrophyte species were more closely related to surface water chemistry than common species in terms of occurrence and abundance. Sites featuring endangered species appeared to have significantly lower turbidity and pH, and lower concentrations of SO4, PO4, total phosphorus (TP) and NH4 than other sites. 4. PO4 and TP concentrations in the water layer increased markedly at PO4 concentrations above 5–10 μmol L?1 in the sediment pore water. High surface water PO4 and TP concentrations appeared to be SO4‐induced and only occurred below certain threshold values for pore water Fe:PO4 (3.5 mol mol?1) and total sediment Fe:P (10 mol mol?1). 5. Interestingly, the occurrence of endangered species also correlated strongly with sediment and sediment pore water ratios; the number of endangered species increased markedly at pore water Fe:PO4 ratios above 1 mol mol?1, whereas their actual abundance had the greatest increase at ratios above 10 mol mol?1. Additionally, endangered species seemed to be more sensitive to accumulation of potentially toxic substances such as sulphide and ammonium than non‐endangered species. 6. As an indicator of both biogeochemical processes and biodiversity, pore water Fe:PO4 ratios could be a valuable diagnostic and prognostic tool for the restoration of water quality and biodiversity in fen waters, e.g. for selecting the most promising sites for restoration and for optimization of restoration measures.  相似文献   

8.
Carl F. Cerco 《Hydrobiologia》1989,174(3):185-194
Empirical models of sediment-water fluxes of NH4 +, NO3 were and PO4 3– were formed based on published reports. The models were revised and parameters evaluated based on laboratory incubations of sediments collected from Gunston Cove, VA. Observed fluxes ranged from — 18 (sediments uptake) to 276 (sediment release) mg NH4 + m–2 day–1, –17 to –509 mg NO3 m–2 day–1, and –16.4 to 8.9 mg PO4 3– m–2 day–1. The model and observations indicated release of NH4 + was enhanced by high temperature and by low DO. Uptake of NO3 was enhanced primarily by high NO3 concentration and to a lesser extent by high temperature and by low DO. Direction of PO4 3– flux depended on concentration in the water. Release was enhanced by low DO. No effect of temperature on PO4 3– flux was observed.  相似文献   

9.
1. We measured NH4+ and PO4?3 uptake length (Sw), uptake velocity (Vf), uptake rate (U), biofilm respiration and enzyme activity and channel geomorphology in streams draining forested catchments in the northwestern (Northern California Coast Range and Cascade Mountains) and southeastern (Appalachian and Ouachita mountains) regions of the United States. Our goal was to use measures of biofilm enzyme activity and nutrient uptake to assess nutrient limitation in forested streams across broad regional scales. 2. Geomorphological attributes, biofilm enzyme activity and NH4+ uptake were significantly different among streams in the four study units. There was no study unit effect on PO4?3 uptake. The proportion of the stream channel in pools, % woody debris, % canopy closure, median substrate size (d50), stream width (w), stream velocity (v), discharge (Q), dispersion coefficient (D) and transient storage (As/A) were correlated with biofilm enzyme activity and nutrient uptake in some study units. 3. Canonical correlation analyses across study units revealed significant correlations of NH4Vf and PO4Vf with geomorphological attributes (w, d50, D, % woody debris, channel slope and % pools) and biofilm phosphatase activity. 4. The results did not support our expectation that carbon processing rates by biofilm microbial assemblages would be governed by stream nutrient availability or that resulting biofilm enzyme activity would be an indicator of nutrient uptake. However, the relative abundances of peptidases, phosphatase and glycosidases did yield insight into potential N‐, P‐ and C‐limitation of stream biofilm assemblages, and our use of biofilm enzyme activity represents a novel application for understanding nutrient limitations in forested streams. 5. Regressions of Vf and U against ambient NH4+ and PO4?3 indicated that none of our study streams was either NH4+ or PO4?3 saturated. The Appalachian, Ouachita and Coastal streams showed evidence of NH4+ limitation; the Ouachita and Coastal streams were PO4?3 limited. As a correlate of nutrient limitation and saturation in streams, ratios of total aminopeptidase and phosphatase activities and the ratio of NH4U to PO4U indicate these forested streams are predominantly N‐limited, with only the streams draining Ouachita and Coastal catchments demonstrating appreciable levels of P‐limitation. 6. Our results comparing the stoichiometry of microbial enzyme activity with nutrient uptake ratios and with the molar ratios N and P in stream waters suggest that biological limitations are not strictly the result of stream chemistry and that the assessments of nutrient limitations in stream ecosystems should not be based on chemistry alone. 7. Our present study, along with previous work in streams, rivers and wetlands, suggests that microbial enzyme activities, especially the ratios of total peptidases to phosphatase, are useful indicators of nutrient limitations in aquatic ecosystems.  相似文献   

10.
Humans have increased the availability of nutrients including nitrogen and phosphorus worldwide; therefore, understanding how microbes process nutrients is critical for environmental conservation. We examined nutrient limitation of biofilms colonizing inorganic (fritted glass) and organic (cellulose sponge) substrata in spring, summer, and autumn in three streams in Michigan, USA. Biofilms were enriched with nitrate (NO3 ), phosphate (PO4 3−), ammonium (NH4 +), NO3  + PO4 3−, NH4 + + PO4 3−, or none (control). We quantified biofilm structure and function as chlorophyll a (i.e., primary producer biomass) and community respiration on all substrata. In one stream, we characterized bacterial and fungal communities on cellulose in autumn using clone library sequencing and denaturing gradient gel electrophoresis to determine if community structure was linked to nutrient limitation status. Despite oligotrophic conditions, primary producer biomass was infrequently nutrient limited. In contrast, respiration on organic substrata was frequently limited by N + P combinations. We found no difference between biofilm response to NH4 + versus NO3 enrichment, although the response to both N-species was positively related to water column PO4 3− concentrations and temperature. Molecular analysis for fungal community composition suggested no relationship to nutrient limitation, but the dominant members of the bacterial community on cellulose were different on NO3 , PO43, and NO3  + PO4 3− treatments relative to control, NH4 +, and NH4 + + PO4 3− treatments, which matched patterns for biofilm respiration rates from each treatment. Our results show discrete patterns of nutrient limitation dependent upon substratum type and season, and imply changes in bacterial community structure and function may be linked following nutrient enrichment in streams.  相似文献   

11.
The removal of conifers through commercial timber harvesting has been successful in restoring aspen, however many aspen stands are located near streams, and there are concerns about potential aquatic ecosystem impairment. We examined the effects of management-scale conifer removal from aspen stands located adjacent to streams on water quality, solar radiation, canopy cover, temperature, aquatic macroinvertebrates, and soil moisture. This 8-year study (2003–2010) involved two projects located in Lassen National Forest. The Pine-Bogard Project consisted of three treatments adjacent to Pine and Bogard Creeks: (i) Phase 1 in January 2004, (ii) Phase 2 in August 2005, and (iii) Phase 3 in January 2008. The Bailey Project consisted of one treatment adjacent to Bailey Creek in September 2006. Treatments involved whole tree removal using track-laying harvesters and rubber tire skidders. More than 80% of all samples analyzed for NO3-N, NH4-N, and PO4-P at Pine, Bogard, and Bailey Creeks were below the detection limit, with the exception of naturally elevated PO4-P in Bogard Creek. All nutrient concentrations (NO3-N, NH4-N, PO4-P, K, and SO4-S) showed little variation within streams and across years. Turbidity and TSS exhibited annual variation, but there was no significant increase in the difference between upstream and downstream turbidity and TSS levels. There was a significant decrease in stream canopy cover and increase in the potential fraction of solar radiation reaching the streams in response to the Pine-Bogard Phase 3 and Bailey treatments; however, there was no corresponding increase in stream temperatures. Macroinvertebrate metrics indicated healthy aquatic ecosystem conditions throughout the course of the study. Lastly, the removal of vegetation significantly increased soil moisture in treated stands relative to untreated stands. These results indicate that, with careful planning and implementation of site-specific best management practices, conifer removal to restore aspen stands can be conducted without degrading aquatic ecosystems.  相似文献   

12.
The sub-arctic Lake Myvatn is one of the most productive lakes in the Northern Hemisphere, despite an ice-cover of 190 days per year. This is due to relatively high solar radiation, nutrient rich inflow waters, N2 fixation and internal nutrient loading. In order to define direction and magnitude of diffusive fluxes, soil water samplers were used to collect interstitial water from 25–150 cm depth, from within the diatomaceous sediment at the bottom of Lake Myvatn. Water depth at the sampling site was 225 cm. The pH of the interstitial water ranged from 7.16 to 7.30, while the pH of the lake water was 9.80–10.00. The concentrations of most solutes were similar 16 cm above the bottom of the lake at the sampling site and at the lake outlet. The concentrations of NO3, S, F, O2, Al, Cr, Mo, V, U, Sn and Sb were higher in the lake water than in the interstitial water. They will therefore diffuse from the lake water into the interstitial water. The concentrations of orthophosphates, PO4, and total dissolved P were highest at 25 cm depth, but Co and NH4 concentrations were highest at 50 to 100 cm depth. Thus they diffuse both up towards the lake bottom and down deeper into the sediments. The concentrations of Na, K, Ca, Mg, Sr, Mn, Li and alkalinity were greater within the sediments than in the lake water and increased continuously with depth. The Si concentration of the interstitial water was higher than in the lake water, it was highest at 25 cm depth and decreased slightly down into the sediments. The concentration gradient was greatest for bicarbonate, HCO3 , 1.5×10–7 mol cm–3 cm–1, and then in declining order for the solutes with the highest gradient; NH4, Si, Na, Ca, Mg, -S (diffusion into the sediments), K, PO4, Cl, Fe and Mn. The estimated annual diffusive flux of PO4 for Lake Myvatn was 0.1 g P m–2 yr–1, about 10% of the total PO4 input to Lake Myvatn. The H4SiO4° flux was 1.3 g Si m–2 yr–1, <1% of both the input and the annual net Si fixation by diatoms within the lake and the diffusive flux of dissolved inorganic carbon was 1% of the annual net C fixation by diatoms. Annual diffusive flux of NH4 + was 1.9 g N m–2 yr–1 similar to the input of fixed N to the lake and 24% of the net N fixation within Lake Myvatn. Thus it is important for the nitrogen budget of Lake Myvatn and the primary production in the lake since fixed nitrogen is the rate determining nutrient for primary production.  相似文献   

13.
The effect of hydroperiod on nutrient removal efficiency from simulated wastewater was investigated in replicate wetland mesocosms (area, 2 m2, planted with Scirpus californicus). Alternate draining and flooding of sediments (pulsed discharge) increased nutrient removal efficiency compared to the continuous-flow “control”. Average PO43− removal efficiency was 20–30% higher in wetland mesocosms that drained twice daily compared to the control. Inorganic N removal efficiency was less affected than phosphate removal by hydroperiod variation. At the higher NH4+ loading rate (1.83 g N m−2 day−1), inorganic N removal efficiency was consistently 5–20% higher in pulsed-discharge wetland mesocosms than in the control. At the lower NH4+ loading rate (0.9 g N m −2 day −1), pulsed-discharge hydrology had no effect on inorganic N removal efficiency. Twice-daily drainage exhibited average inorganic N removal efficiencies of 96% (lower N loading rate) and 87% (higher N loading) and average phosphate removal efficiencies of 81% (lower P loading) and 90% (higher P loading). Mass balance data from the continuous-flow treatment revealed that the aquatic macrophyte Scirpus californicus was the most important nutrient sink, assimilating 50% of the NH4+ and PO43− supply. The high plant productivity in the mesocosms (15.6 kg m−2 year−1) occurred under conditions of high light (high edge per mesocosm area) and high root contact with nutrient-rich influent (shallow, sandy substrate) and may overestimate plant uptake in larger wetlands. The addition of a nitrification-inhibitor (N-Serve) indicated that 34% of the NH4+ supply was transformed to NO3 by nitrifying bacteria.  相似文献   

14.
Six streams in the Los Tuxtlas region, a volcanic area in southeastern Mexico, were characterized chemically and biologically. Temperature, pH, conductivity, ions (Ca2+, Mg2+, Na+, K+, CaCO 3 and SO2- 4), nutrients (NO 3, NH+ 4, total P and PO–3 4), and chlorophyll a from epilithon were measured every other month from September 1996 to July 1997. The streams studied had a consistent pattern of cation dominance (Na+>Ca2+>Mg2+>K+), and ionic concentrations varied little during the year of study; nutrients, however, showed strong temporal variability. The ion chemistry of the streams was influenced by bedrock weathering according to the Gibbs Model. The streams are chiefly mesotrophic, but their primary production may be limited by nitrogen based on the N:P ratio. Streams differed in chlorophyll a concentrations and their productivity changed temporally. They were among the most mineral-rich tropical streams, and both their ion concentration levels and cationic patterns coincided with other neotropical volcanic streams. Although there was a pattern in which ion concentrations of the streams were negatively related to the proportion of conserved vegetation and positively related to the proportion of pastures and croplands, the relationships were not statistically significant. We concluded that differences in the major ions of the streams studied were caused by the great heterogeneity in geology and soil types, as well as by geothermal activity in the area. Temporal changes in nutrients were related to biological processes in the streams that influenced primary productivity. Moreover, the influence of land use might be hidden by the strong effect of this heterogeneity on the streams studied.  相似文献   

15.
K. R. Reddy 《Hydrobiologia》1981,85(3):201-207
A field study was conducted during the months of October, January, May, and July (1979–80) to examine the diel variations in dissolved O2 (DO), pH, dissolved CO2, bicarbonate and carbonate alkalinity, NH4-N, NO3-N, and PO4-P concentration, and conductivity (EC) of the water in six aquatic systems. Water in hyacinth (Eichhornia crassipes) ponds showed very little or no diel or seasonal variations in DO, pH, dissolved CO2, and bicarbonate alkalinity. Dissolved O2 concentration of the water under floating hyacinth cover was in the range of 0.2–3.0 µg/ml, while dissolved CO2 levels were in the range of 10–35 µg/ml. In the aquatic systems with no floating vegetation, i.e., elodea (Egeria densa) pond, cattail (Typha sp.) pond, control pond (filamentous algae and Chara spp.), and eutrophic lake (algae in Lake Apopka), DO and pH of the water increased during mid-day and decreased during the night. Dissolved O2 levels in these ponds were in the range of 5–20 µg/ml during mid-day and 2–8 µg/ml during the night, while pH of the water was in the range of 8–9.5 during mid-day and decreased to 7–8 during the night. An inverse relationship was observed between bicarbonate and carbonate alkalinity of the water in the aquatic systems with no floating vegetation while no carbonates were detected in the water with floating hyacinth plants. Ammonium N, NO3-N and PO4-P concentration of the water in these aquatic systems showed very little or no diel variations.Florida Agricultural Experiment Stations Journal Series No. 2788.  相似文献   

16.
Phytoplankton dynamics in a deep, tropical, hyposaline lake   总被引:3,自引:3,他引:0  
The annual variation of the phytoplankton assemblage of deep (64.6 m), hyposaline (8.5 g l–1) Lake Alchichica, central Mexico (19 ° N, 97° W), was analyzed in relation to thermal regime, and nutrients concentrations. Lake Alchichica is warm monomictic with a 3-month circulation period during the dry, cold season. During the stratified period in the warm, wet season, the hypolimnion became anoxic. N–NH3 ranged between non detectable (n.d.) and 0.98 mg l–1, N–NO2 between n.d. and 0.007 mg l–1, N–NO3 from 0.1 to 1.0 mg l–1 and P–PO4 from n.d. to 0.54 mg l–1. Highest nutrient concentrations were found in the circulation period. Chlorophyll a varied from <1 to 19.8 g l–1 but most values were <5 g l–1. The euphotic zone (>1% PAR) usually comprised the top 15–20 m. Nineteen algae species were identified, most of them are typical inhabitants of salt lakes. Diatoms showed the highest species number (10) but the small chlorophyte Monoraphidium minutum, the single-cell cyanobacteria, Synechocystis aquatilis, and the colonial chlorophyte, Oocystis parva, were the numerical dominant species over the annual cycle. Chlorophytes, small cyanobacteria and diatoms dominated in the circulation period producing a bloom comparable to the spring bloom in temperate lakes. At the end of the circulation and at the beginning of stratification periods, the presence of a bloom of the nitrogen-fixing cyanobacteria, N. spumigena, indicated nitrogen-deficit conditions. The well-stratified season was characterized by low epilimnetic nutrients levels and the dominance of small single-cell cyanobacteria and colonial chlorophytes. Phytoplankton dynamics in tropical Lake Alchichica is similar to the pattern observed in some deep, hyposaline, North American temperate lakes.  相似文献   

17.
Removal of inorganic ions from wastewaters by immobilized microalgae   总被引:9,自引:0,他引:9  
Anabaena doliolum and Chlorella vulgaris immobilized on chitosan were more efficient at removing NO3 , NO2 p–, PO4 3– and CR2O7 2– from wastewaters than cells immobilized on agar, alginate, carrageenan or even free cells. Carrageenan-immobilized cells, however, were better at removing NH4 + and Ni2+. The PO4 3– uptake capacity was significantly increased in cells starved of PO4 3– for 24 h. Agar-immobilized cells, though having good metal and nutrient uptake efficiency, had only a slow growth rate. Chitosan is recommended as an algal support for wastewater detoxification.The authors are with the Laboratory of Algal Biology, Department of Botany, Banaras Hindu University, Varanasi-221005, India  相似文献   

18.
In streams, the release of nitrogen and phosphorus is reported to affect microbial communities and the ecological processes they govern. Moreover, the type of inorganic nitrogen (NO3, NO2, or NH4) may differently impact microbial communities. We aimed to identify the environmental factors that structure aquatic microbial communities and drive leaf litter decomposition along a gradient of eutrophication. We selected five circumneutral (Portuguese) and five alkaline (French) streams differing in nutrient concentrations to monitor mass loss of alder leaves, bacterial and fungal diversity by PCR-denaturing gradient gel electrophoresis, fungal biomass and reproduction, and bacterial biomass during 11 weeks of leaf immersion. The concentrations of inorganic nutrients in the stream water ranged from 5 to 300 μg liter−1 soluble reactive phosphorus, 0.30 to 5.50 mg liter−1 NO3-N, 2 to 103 μg liter−1 NO2-N, and <4 to 7,100 μg liter−1 NH4-N. Species richness was maximum in moderately anthropized (eutrophic) streams but decreased in the most anthropized (hypertrophic) streams. Different species assemblages were found in subsets of streams with different trophic statuses. In both geographic areas, the limiting nutrient, either nitrate or phosphate, stimulated the microbial activity in streams of intermediate trophic status. In the hypertrophic streams, fungal biomass and reproduction were significantly lower, and bacterial biomass dramatically decreased at the site with the highest ammonium concentration. The limiting nutrients that defined the trophic status were the main factor structuring fungal and bacterial communities, whatever the geographic area. A very high ammonium concentration in stream water most probably has negative impacts on microbial decomposer communities.There is evidence that increases in nitrate and phosphate concentrations stimulate microbial respiration and fungal and bacterial activity (biomass buildup, sporulation, and/or productivity) on plant litter, leading to faster leaf decomposition in freshwaters (16, 17, 26, 34). However, fungal demands of nitrate and phosphate are reported to be fulfilled at relatively low levels (1, 12), and further increases in these nutrients in the stream water do not necessarily result in enhanced fungal activity. Besides, the form in which inorganic nutrients are present in streams, their biological availability, and even their toxicity have different ecological consequences. In densely anthropized hypertrophic streams, high levels of nitrate and phosphate were associated with decreased fungal biomass and leaf breakdown, most probably because of the high concentrations of ammonium and ammonia (2). On the other hand, the positive effects of nutrients on biomass and productivity of leaf-associated fungi can be offset by other factors, such as low oxygen concentration and sedimentation, leading to retarded decomposition (26, 33, 34).Changes in inorganic nutrient concentrations in the stream water were reported to alter the structure of fungal communities on plant litter (16, 36). Nutrient additions to moderate levels increased the diversity of fungal communities in circumneutral soft-water Appalachian mountain streams (18) but not in a Mediterranean alkaline stream (1). Moreover, fungal diversity was lower in circumneutral eutrophic streams than in reference streams (10, 35). Fungal diversity has been assessed mostly through the morphological analysis of produced conidia, not taking into account nonsporulating fungi. This raises the question of whether the differential impacts of eutrophication on fungal diversity could be due partly to difficulties in measuring actual diversity. Besides, the study of bacterial diversity on decomposing leaves has been strongly restricted to a few cultivable bacteria (<1%). Molecular typing, such as denaturing gradient gel electrophoresis (DGGE) of a specific rRNA gene region, has proved useful for assessing diversity in both leaf-associated fungi and bacteria (7, 8, 9, 11, 30).We aimed to identify the environmental factors that drive the ecological processes in freshwaters impacted by eutrophication through examination of leaf litter decomposition and associated microbial communities along a gradient of nutrient enrichment. Specifically, we addressed the following two questions: (i) which are the environmental factors that mainly structure the fungal and bacterial communities and (ii) what are the relationships between concentrations of inorganic nutrients in the stream water, leaf litter decomposition, and the activity of associated microbes? We selected 10 stream sites spanning wide concentration ranges of dissolved inorganic nitrogen (NO3-N, NO2-N, NH4-N, and NH3-N) and soluble reactive phosphorus (SRP), including 5 in northwestern Portugal with circumneutral pH and 5 in southwestern France with an alkaline pH. With these two groups of stream sites, we assessed the structure of and diversity in both sporulating and nonsporulating fungal communities, using asexual spore morphology and DGGE fingerprints of the ITS2 region, and in bacterial communities, using DGGE fingerprints of the 16S rRNA gene region. Additionally, we examined leaf mass loss and microbial activity on decomposing leaves by determining bacterial and fungal biomass and fungal reproduction.  相似文献   

19.
Orthophosphate turnover in East African lakes   总被引:6,自引:1,他引:6  
Summary Turnover rates of 32P–PO4 and concentrations of orthophosphate as soluble reactive phosphorus (SRP) were measured in five East African waters. Rapid incorporation of 32P–PO4 by the seston and orthophosphate concentrations below the limit of detectibility were found in Lakes Elmenteita, Naivasha, and Naivasha Crater Lake. Turnover was slow and orthophosphate concentration high in both Lake Nakuru and the Crescent Island Crater basin of Lake Naivasha. Further experiments in Lake Nakuru indicated that colloidal binding of orthophosphate was limited and that particles retained by an 8.0 filter incorporated 66% as much tracer as particles retained by a 0.1 filter. These experiments strengthen our conclusion that a large quantity of orthophosphate is available for algal use in Lake Nakuru.  相似文献   

20.
Past research strongly indicates the importance of amino acids in the N economy of the Arctic tundra, but little is known about the seasonal dynamics of amino acids in tundra soils. We repeatedly sampled soils from tussock, shrub, and wet sedge tundra communities in the summers of 2000 and 2001 and extracted them with water (H2O) and potassium sulfate (K2SO4) to determine the seasonal dynamics of soil amino acids, ammonium (NH4+), nitrate (NO3), dissolved organic nitrogen (DON), dissolved organic carbon (DOC), and phosphate (PO42–). In the H2O extractions mean concentrations of total free amino acids (TFAA) were higher than NH4+ in all soils but shrub. TFAA and NH4+ were highest in wet sedge and tussock soils and lowest in shrub soil. The most predominant amino acids were alanine, arginine, glycine, serine, and threonine. None of the highest amino acids were significantly different than NH4+ in any soil but shrub, in which NH4+ was significantly higher than all of the highest individual amino acids. Mean NO3 concentrations were not significantly different from mean TFAA and NH4+ concentrations in any soil but tussock, where NO3 was significantly higher than NH4+. In all soils amino acid and NH4+ concentrations dropped to barely detectable levels in the middle of July, suggesting intense competition for N at the height of the growing season. In all soils but tussock, amino acid and NH4+ concentrations rebounded in August as the end of the Arctic growing season approached and plant N demand decreased. This pattern suggests that low N concentrations in tundra soils at the height of the growing season are likely the result of an increase in soil N uptake associated with the peak in plant growth, either directly by roots or indirectly by microbes fueled by increased root C inputs in mid-July. As N availability decreased in July, PO42– concentrations in the K2SO4 extractions increased dramatically in all soils but shrub, where there was a comparable increase in PO42– later in the growing season. Previous research suggests that these increases in PO42– concentrations are due to the mineralization of organic phosphorus by phosphatase enzymes associated with soil microbes and plant roots, and that they may have been caused by an increase in organic P availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号