首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Objectives: Mitochondrial oxidative stress is involved in the pathogenesis of diabetic kidney disease. The objective of our study is to identify the mechanisms of renal mitochondrial oxidative stress, focusing on Sirt3, which is nicotinamide adenine dinucleotide (NAD+; oxidized NAD)-dependent deacetylase in mitochondria.

Methods: Renal mitochondrial oxidative stress and Sirt3 activity, using Zucker diabetic fatty rats (ZDFRs) and cultured proximal tubular cells under high-glucose condition were evaluated.

Results: At 28 weeks of age, ZDFRs exhibited the increased urinary albumin/liver-type fatty acid-binding protein (L-FABP)/8-hydroxy-2'-deoxyguanosine (8-OHdG) excretion, histological tubular cell damage, compared to non-diabetic Zucker Lean rats. In renal mitochondria, acetylated isocitrate dehydrogenase2 (IDH2) and superoxide dismutase2 (SOD2), accompanied with mitochondrial oxidative stress and mitochondrial morphologic alterations, were increased in ZDFRs, indicating inactivation of Sirt3. Additionally, expression of the NAD-degrading enzyme, CD38, was increased, and the NAD+/NADH (reduced NAD) ratio was reduced in the renal cortex of ZDFRs. High-glucose stimulation in cultured proximal tubular cells also resulted in an increase in acetylated IDH2/SOD2, CD38 overexpression and a reduction in the NAD+/NADH ratio.

Conclusions: Enhancement of mitochondrial oxidative stress in the diabetic kidney was mediated by the reduction of Sirt3 activity. CD38 overexpression may be related to a reduction in the NAD+/NADH ratio in the diabetic kidney.  相似文献   


3.
Perturbed metabolism of ammonia, an endogenous cytotoxin, causes mitochondrial dysfunction, reduced NAD+/NADH (redox) ratio, and postmitotic senescence. Sirtuins are NAD+-dependent deacetylases that delay senescence. In multiomics analyses, NAD metabolism and sirtuin pathways are enriched during hyperammonemia. Consistently, NAD+-dependent Sirtuin3 (Sirt3) expression and deacetylase activity were decreased, and protein acetylation was increased in human and murine skeletal muscle/myotubes. Global acetylomics and subcellular fractions from myotubes showed hyperammonemia-induced hyperacetylation of cellular signaling and mitochondrial proteins. We dissected the mechanisms and consequences of hyperammonemia-induced NAD metabolism by complementary genetic and chemical approaches. Hyperammonemia inhibited electron transport chain components, specifically complex I that oxidizes NADH to NAD+, that resulted in lower redox ratio. Ammonia also caused mitochondrial oxidative dysfunction, lower mitochondrial NAD+-sensor Sirt3, protein hyperacetylation, and postmitotic senescence. Mitochondrial-targeted Lactobacillus brevis NADH oxidase (MitoLbNOX), but not NAD+ precursor nicotinamide riboside, reversed ammonia-induced oxidative dysfunction, electron transport chain supercomplex disassembly, lower ATP and NAD+ content, protein hyperacetylation, Sirt3 dysfunction and postmitotic senescence in myotubes. Even though Sirt3 overexpression reversed ammonia-induced hyperacetylation, lower redox status or mitochondrial oxidative dysfunction were not reversed. These data show that acetylation is a consequence of, but is not the mechanism of, lower redox status or oxidative dysfunction during hyperammonemia. Targeting NADH oxidation is a potential approach to reverse and potentially prevent ammonia-induced postmitotic senescence in skeletal muscle. Since dysregulated ammonia metabolism occurs with aging, and NAD+ biosynthesis is reduced in sarcopenia, our studies provide a biochemical basis for cellular senescence and have relevance in multiple tissues.  相似文献   

4.
Abstract

In the twentieth century, NAD+ research generated multiple discoveries. Identification of the important role of NAD+ as a cofactor in cellular respiration and energy production was followed by discoveries of numerous NAD+ biosynthesis pathways. In recent years, NAD+ has been shown to play a unique role in DNA repair and protein deacetylation. As discussed in this review, there are close interactions between oxidative stress and immune activation, energy metabolism, and cell viability in neurodegenerative disorders and ageing. Profound interactions with regard to oxidative stress and NAD+ have been highlighted in the present work. This review emphasizes the pivotal role of NAD+ in the regulation of DNA repair, stress resistance, and cell death, suggesting that NAD+ synthesis through the kynurenine pathway and/or salvage pathway is an attractive target for therapeutic intervention in age-associated degenerative disorders. NAD+ precursors have been shown to slow down ageing and extend lifespan in yeasts, and protect severed axons from degeneration in animal models neurodegenerative diseases.  相似文献   

5.
6.
Sirt2, a NAD+-dependent histone deacetylase, plays a critical role in regulating lifespan, metabolism, mitosis and adipocyte differentiation. Here two bands of the porcine Sirt2 protein were found by western blotting, so we speculated existence of Sirt2 isoforms. Next, we cloned the porcine Sirt2 gene, and also found its alternative splice variant and named the novel splicing variant Sirt2T. The complete cDNA sequence of Sirt2T is 1059 bp, encoding a deduced protein of 352 amino acids which is 39 amino acids shorter at the N-terminus than Sirt2. RT–PCR revealed that the Sirt2T mRNA is extensively expressed in porcine tissues, and can be expressed during adipocyte differentiation. In addition, immunofluorescence and transfection demonstrated that Sirt2T is located in the cytoplasm and nucleus.  相似文献   

7.
Saccharomyces cerevisiae is calorie-restricted by lowering glucose from 2% to 0.5%. Under low glucose conditions, replicative lifespan is extended in a manner that depends on the NAD+-dependent protein lysine deacetylase Sir2 and NAD+ salvage enzymes. Because NAD+ is required for glucose utilization and Sir2 function, it was postulated that glucose levels alter the levels of NAD+ metabolites that tune Sir2 function. Though NAD+ precursor vitamins, which increase the levels of all NAD+ metabolites, can extend yeast replicative lifespan, glucose restriction does not significantly change the levels or ratios of intracellular NAD+ metabolites. To test whether glucose restriction affects protein copy numbers, we developed a technology that combines the measurement of Urh1 specific activity and quantification of relative expression between Urh1 and any other protein. The technology was applied to obtain the protein copy numbers of enzymes involved in NAD+ metabolism in rich and synthetic yeast media. Our data indicated that Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinamide and then to nicotinic acid, are up-regulated by glucose restriction in rich media, and that Pnc1 alone is up-regulated in synthetic media while levels of all other enzymes are unchanged. These data suggest that production or export of nicotinic acid might be a connection between NAD+ and calorie restriction-mediated lifespan extension in yeast.  相似文献   

8.
Sirt3, a mitochondrial NAD+-dependent deacetylase, is regarded as a potential regulator in cellular metabolism. However, the role of Sirt3 in the regulation of mitochondrial FoF1ATPase and the linkage to mitochondrial diseases is unclear. In this study, we demonstrated a role of Sirt3 in the regulation of FoF1ATPase activity in human cells. Knockdown of Sirt3 in 143B cells by shRNA transfection caused increased acetylation levels of the α and OSCP subunits of FoF1ATPase. We showed that Sirt3 physically interacted with the OSCP and led to its subsequent deacetylation. By incubation of mitochondria with the purified Sirt3 protein, Sirt3 could regulate FoF1ATPase activity through its deacetylase activity. Moreover, suppression of Sirt3 reduced the FoF1ATPase activity, consequently decreased the intracellular ATP level, diminished the capacity of mitochondrial respiration, and compromised metabolic adaptability of 143B cells to the use of galactose as the energy source. In human cells harboring ? 85% of mtDNA with 4977 bp deletion, we showed that oxidative stress induced a reduction of Sirt3 expression, and an increased acetylation of the OSCP subunit of FoF1ATPase. Importantly, the expression of Sirt3 was also decreased in the skin fibroblasts from patients with CPEO syndrome. We further demonstrated that oxidative stress induced by 5–10 μM of menadione impaired the Sirt3-mediated deacetylation and activation on FoF1ATPase activity through decreasing the protein level of Sirt3. Our findings suggest that increased intracellular ROS levels might modulate the expression of Sirt3 which deacetylates and activates FoF1ATPase in human cells with mitochondrial dysfunction caused by a pathogenic mtDNA mutation.  相似文献   

9.
10.
Sirtuins are protein deacylases regulating metabolism and aging processes, and the seven human isoforms are considered attractive therapeutic targets. Sirtuins transfer acyl groups from lysine sidechains to ADP-ribose, formed from the cosubstrate NAD+ by release of nicotinamide, which in turn is assumed to be a general Sirtuin inhibitor. Studies on Sirtuin regulation have been hampered, however, by shortcomings of available assays. Here, we describe a mass spectrometry–based, quantitative deacylation assay not requiring any substrate labeling. Using this assay, we show that the deacetylation activity of human Sirt5 features an unusual insensitivity to nicotinamide inhibition. In contrast, we find similar values for Sirt5 and Sirt3 for the intrinsic NAD+ affinity as well as the apparent NAD+ affinity in presence of peptide. Structure comparison and mutagenesis identify an Arg neighboring to the Sirt5 nicotinamide binding pocket as a mediator of nicotinamide resistance, and statistical sequence analyses along with testing further Sirtuins reveal a network of coevolved residues likely defining a nicotinamide-insensitive Sirtuin deacetylase family. The same Arg was recently reported to render Sirt5 a preferential desuccinylase, and we find that this Sirt5 activity is highly sensitive to nicotinamide inhibition. Analysis of Sirt5 structures and activity data suggest that an Arg/succinate interaction is the molecular basis of the differential nicotinamide sensitivities of the two Sirt5 activities. Our results thus indicate a Sirtuin subfamily with nicotinamide-insensitive deacetylase activity and suggest that the molecular features determining nicotinamide sensitivity overlap with those dominating deacylation specificity, possibly suggesting that other subfamily members might also prefer other acylations than acetylations.  相似文献   

11.
Androst-4-ene-3, 17-dione (AD) and androst-1, 4-diene-3, 17-dione (ADD) are generally produced by the biotransformation of phytosterols in Mycobacterium. The AD (D) production increases when the strain has high NAD+/NADH ratio. To enhance the AD (D) production in Mycobacterium neoaurum TCCC 11978 (MNR M3), a rational strategy was developed through overexpression of a gene involved in the phytosterol degradation pathway; NAD+ was generated as well. Proteomic analysis of MNR cultured with and without phytosterols showed that the steroid C27-monooxygenase (Cyp125-3), which performs sequential oxidations of the sterol side chain at the C27 position and has the oxidative cofactor of NAD+ generated, played an important role in the phytosterol biotransformation process of MNR M3. To improve the productivity of AD (D), the cyp125-3 gene was overexpressed in MNR M3. The specific activity of Cyp125-3 in the recombinant strain MNR M3C3 was improved by 22% than that in MNR M3. The NAD+/NADH ratio in MNR M3C3 was 131% higher than that in the parent strain. During phytosterol biotransformation, the conversion of sterols increased from 84 to 96%, and the yield of AD (D) by MNR M3C3 was increased by approximately 18% for 96 h fermentation. This rational strain modification strategy may also be applied to develop strains with important application values for efficient production of cofactor-dependent metabolites.  相似文献   

12.
The present study demonstrates that the mitochondrial respiratory chain includes not three but four energy coupling sites, the fourth site being localized at the NADPH→NAD+ step.
  1. The NADPH→NAD+-directed transhydrogenase reaction in sonicated beef heart submitochondrial particles energizes the particle membrane as judged by two membrane potential probes, i.e. uptake of a penetrating anion, phenyldicarbaundecaborane (PCB?), and enhancement of anilinonaphthalene sulfonate (ANS?) fluorescence.
  2. The reverse reaction (NADH→NADP+) is accompanied by the oppositely directed anion movement, i.e. PCB? efflux.
  3. Being insensitive to rotenone, antimycin, cyanide, and oligomycin, both the influx and efflux of PCB? coupled with transhydrogenase reaction can be prevented or reversed by uncouplers.
  4. Equalization of concentrations of the transhydrogenase substrates and products also prevents (or reverses) the PCB? influx coupled with oxidation of NADPH by NAD+, as well as the PCB? efflux coupled with reduction of NADP+ by NADH.
  5. The transhydrogenase-linked PCB? uptake depends linearly on the energy yield of the oxidation reaction calculated according to formula $$\Delta G = RTln\frac{{[NADPH] x [NAD^ + ]}}{{[NADP^ + ] x [NADH]^ \cdot }}$$ No threshold value of Δ was found. Measurable PCB? transport was still observed at Δ≤0.5 kcal/mole NADPH oxidized.
  6. Partial uncoupling of transhydrogenase reaction and PCB? transport, induced by low concentrations ofp-trifluoromethoxycarbonylcyanide phenylhydrazone (FCCP), dinitrophenol, or by removing coupling factor F1, results in the decrease of the slope of the straight line showing the PCB? uptake as a function of Δ. Oligomycin improves the coupling in F1-deprived particles, the slope being increased. Rutamycin, dicyclohexylcarbodiimide (DCCD) and reconstitution of particles with F1, also increase the coupling.
  7. In phosphorylating particles oxidizing succinate by O2, both the energy-dependent NADH→NADP+ hydrogen transfer and PCB? influx possess equal sensitivity to FCCP, which is lower than the sensitivity of oxidative phosphorylation. Similarly, the decrease in the succinate oxidation rate induced by malonate arrests first phosphorylation and then under higher malonate concentration, PCB? influx. The rate of NADPH→NAD+ transhydrogenase reaction was found to be lower than the threshold value of rate of succinate oxidation, still coupled with phosphorylation. Respectively, the values of PCB? uptake under transhydrogenase reaction are lower than those inherent in phosphorylating oxidation of succinate.
The conclusion is made that the NADPH→NAD+-directed transhydrogenase reaction generates the membrane potential of the same polarity as respiration and ATP hydrolysis but of a lower magnitude (“plus” inside particles; the forward hydrogen transfer). The NADH→NADP+-directed transhydrogenase reaction forms the membrane potential of the opposite polarity (“minus” inside particles; the reverse hydrogen transfer). Under conditions used, the transhydrogenase-produced membrane potential proves to be too low to support ATP synthesis (and, most probably, the synthesis of any other high-energy compound) maintaining, nevertheless, some electrophoretic ion fluxes. A conclusion is made that transhydrogenase forms a membrane potential with no high-energy intermediates involved.  相似文献   

13.
14.
15.
Neurofibromin loss drives neoplastic growth and a rewiring of mitochondrial metabolism. Here we report that neurofibromin ablation dampens expression and activity of NADH dehydrogenase, the respiratory chain complex I, in an ERK-dependent fashion, decreasing both respiration and intracellular NAD+. Expression of the alternative NADH dehydrogenase NDI1 raises NAD+/NADH ratio, enhances the activity of the NAD+-dependent deacetylase SIRT3 and interferes with tumorigenicity in neurofibromin-deficient cells. The antineoplastic effect of NDI1 is mimicked by administration of NAD+ precursors or by rising expression of the NAD+ deacetylase SIRT3 and is synergistic with ablation of the mitochondrial chaperone TRAP1, which augments succinate dehydrogenase activity further contributing to block pro-neoplastic metabolic changes. These findings shed light on bioenergetic adaptations of tumors lacking neurofibromin, linking complex I inhibition to mitochondrial NAD+/NADH unbalance and SIRT3 inhibition, as well as to down-regulation of succinate dehydrogenase. This metabolic rewiring could unveil attractive therapeutic targets for neoplasms related to neurofibromin loss.Subject terms: Cancer metabolism, Cell biology  相似文献   

16.
Sirtuin1 (SIRT1) deacetylase and poly(ADP-ribose)-polymerase-1 (PARP-1) respond to environmental cues, and both require NAD+ cofactor for their enzymatic activities. However, the functional link between environmental/oxidative stress-mediated activation of PARP-1 and SIRT1 through NAD+ cofactor availability is not known. We investigated whether NAD+ depletion by PARP-1 activation plays a role in environmental stimuli/oxidant-induced reduction in SIRT1 activity. Both H2O2 and cigarette smoke (CS) decreased intracellular NAD+ levels in vitro in lung epithelial cells and in vivo in lungs of mice exposed to CS. Pharmacological PARP-1 inhibition prevented oxidant-induced NAD+ loss and attenuated loss of SIRT1 activity. Oxidants decreased SIRT1 activity in lung epithelial cells; however increasing cellular NAD+ cofactor levels by PARP-1 inhibition or NAD+ precursors was unable to restore SIRT1 activity. SIRT1 was found to be carbonylated by CS, which was not reversed by PARP-1 inhibition or selective SIRT1 activator. Overall, these data suggest that environmental/oxidant stress-induced SIRT1 down-regulation and PARP-1 activation are independent events despite both enzymes sharing the same cofactor.  相似文献   

17.
Coenzyme and substrate interactions with mannitol-1-phosphate dehydrogenase fromEscherichia coli (a dimer of MW 45,000) have been studied by fluorescence spectroscopy. NAD+ quenches the fluorescence emission of the protein tryptophan residues; shifting the excitation wavelength from 280 to 290 nm results in an increase in this quenching and a red shift in the emission maximum. NAD+ also quenches the fluorescence of covalently attached pyridoxyl phosphate, and this quenching is accompanied by a spectral broadening above 425 nm. Fructose-6-phosphate increases the binding of NAD+, but causes a slight reduction in the quenching of the tryptophan fluorescence observed at saturating levels of coenzyme, and reverses the NAD+-induced broadening in the pyridoxyl phosphate emission spectrum. NADH quenches the protein emission much less than NAD+; this quenching is not changed by shifting the excitation wavelength and is not affected by the presence of bound mannitol-1-phosphate. Titrations monitoring the quenching by NADH indicate a single class of NADH binding sites, while titrations monitoring NADH fluorescence suggest that coenzyme fluorescence is more enhanced when NADH is bound to less than half of the total enzyme subunits, with the emission per NADH molecule bound decreasing as the number of NADH molecules bound increases. In the absence of coenzyme, neither fructose-6-phosphate nor mannitol-1-phosphate have any effect on the protein tryptophan emission; however, both substrates induce specific changes in the emission spectrum of covalently attached pyridoxyl phosphate. These results suggest that the different coenzymes and substrates cause specific conformational changes in mannitol-1-phosphate dehydrogenase.  相似文献   

18.
Our previous work revealed proanthocyanidins (PAs) could pose significant enhancement on the activity of H+-ATPase and fermentation efficiency after a transient initial inhibition (Li et al in Am J Enol Vitic 62(4):512–518, 2011). The aim of the present work was to understand the possible mechanism for this regulation. At Day 0.5 the gene expression level of PMA1 in AWRI R2 strain supplemented with 1.0 mg/mL PAs was decreased by around 54 % with a 50 % and a 56.5 % increase in the concentration of intracellular ATP and NADH/NAD+ ratio, respectively, compared to that of control. After the transient adaptation, the gene expression levels of PMA1 and HXT7 in PAs-treated cells were enhanced significantly accompanied by the decrease of ATP contents and NADH/NAD+ ratio, which resulted in the high level of the activities of rate-limiting enzymes. PAs could pose significant effects on the fermentation via glucose transport, the energy and redox homeostasis as well as the activities of rate-limiting enzymes in glycolysis.  相似文献   

19.
20.
Mitochondrial NAD+‐dependent protein deacetylase Sirtuin3 (SIRT3) has been proposed to mediate calorie restriction (CR)‐dependent metabolic regulation and lifespan extension. Here, we investigated the role of SIRT3 in CR‐mediated longevity, mitochondrial function, and aerobic fitness. We report that SIRT3 is required for whole‐body aerobic capacity but is dispensable for CR‐dependent lifespan extension. Under CR, loss of SIRT3 (Sirt3 −/− ) yielded a longer overall and maximum lifespan as compared to Sirt3 +/+ mice. This unexpected lifespan extension was associated with altered mitochondrial protein acetylation in oxidative metabolic pathways, reduced mitochondrial respiration, and reduced aerobic exercise capacity. Also, Sirt3 −/− CR mice exhibit lower spontaneous activity and a trend favoring fatty acid oxidation during the postprandial period. This study shows the uncoupling of lifespan and healthspan parameters (aerobic fitness and spontaneous activity) and provides new insights into SIRT3 function in CR adaptation, fuel utilization, and aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号