首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
1. Spatial and temporal availability of pollen helps shape bee foraging behaviour and productivity, which has been studied in great detail at the landscape level, but never in a diverse tropical forest. 2. To study the effect of spatio‐temporal variation in resource distribution on pollen use and productivity, we identified pollen from spatially explicit nest collections of two generalist sweat bees, Megalopta genalis Meade‐Waldo and M. centralis Friese, from Barro Colorado Island, Panama, a 50‐ha forest dynamics plot during the 2007 dry and early wet seasons. Pollen from nests collected in 1998–1999 without spatial information was also identified. 3. Bees used pollen of at least 64 species; many of these occurred in only one collection. The 2007 collections contained pollen of 35 different species, but were dominated by five species, especially Hura crepitans L. and Pseudobombax septenatum (Jacq.) Dugand. 4. Temporal availability, but not distance from nest, influenced flower use at a 50‐ha scale. 5. Body size was not associated with minimum flight distance as inferred from pollen collections. 6. Nest productivity and pollen diversity decreased from the dry to wet seasons, mirroring community‐level availability of floral resources. 7. Results suggest that on a scale of 50 ha, bees are choosing certain host plant species regardless of distance from the nest, but adjusting foraging behaviour opportunistically based on the temporal availability of host flowers.  相似文献   

2.
1. Genetic polymorphisms of flowering plants can influence pollinator foraging but it is not known whether heritable foraging polymorphisms of pollinators influence their pollination efficacies. Honey bees Apis mellifera L. visit cranberry flowers for nectar but rarely for pollen when alternative preferred flowers grow nearby. 2. Cranberry flowers visited once by pollen‐foraging honey bees received four‐fold more stigmatic pollen than flowers visited by mere nectar‐foragers (excluding nectar thieves). Manual greenhouse pollinations with fixed numbers of pollen tetrads (0, 2, 4, 8, 16, 32) achieved maximal fruit set with just eight pollen tetrads. Pollen‐foraging honey bees yielded a calculated 63% more berries than equal numbers of non‐thieving nectar‐foragers, even though both classes of forager made stigmatic contact. 3. Colonies headed by queens of a pollen‐hoarding genotype fielded significantly more pollen‐foraging trips than standard commercial genotypes, as did hives fitted with permanently engaged pollen traps or colonies containing more larvae. Pollen‐hoarding colonies together brought back twice as many cranberry pollen loads as control colonies, which was marginally significant despite marked daily variation in the proportion of collected pollen that was cranberry. 4. Caloric supplementation of matched, paired colonies failed to enhance pollen foraging despite the meagre nectar yields of individual cranberry flowers. 5. Heritable behavioural polymorphisms of the honey bee, such as pollen‐hoarding, can enhance fruit and seed set by a floral host (e.g. cranberry), but only if more preferred pollen hosts are absent or rare. Otherwise, honey bees' broad polylecty, flight range, and daily idiosyncrasies in floral fidelity will obscure specific pollen‐foraging differences at a given floral host, even among paired colonies in a seemingly uniform agricultural setting.  相似文献   

3.
Body size is an important trait linking pollinators and plants. Morphological matching between pollinators and plants is thought to reinforce pollinator fidelity, as the correct fit ensures that both parties benefit from the interaction. We investigated the influence of body size in a specialized pollination system (buzz‐pollination) where bees vibrate flowers to release pollen concealed within poricidal stamens. Specifically, we explored how body size influences the frequency of buzz‐pollination vibrations. Body size is expected to affect frequency as a result of the physical constraints it places on the indirect flight muscles that control the production of floral vibrations. Larger insects beat their wings less rapidly than smaller‐bodied insects when flying, but whether similar scaling relationships exist with floral vibrations has not been widely explored. This is important because the amount of pollen ejected is determined by the frequency of the vibration and the displacement of a bee's thorax. We conducted a field study in three ecogeographic regions (alpine, desert, grassland) and recorded flight and floral vibrations from freely foraging bees from 27 species across four families. We found that floral vibration frequencies were significantly higher than flight frequencies, but never exceeded 400 Hz. Also, only flight frequencies were negatively correlated with body size. As a bee's size increased, its buzz ratio (floral frequency/flight frequency) increased such that only the largest bees were capable of generating floral vibration frequencies that exceeded double that of their flight vibrations. These results indicate size affects the capacity of bees to raise floral vibration frequencies substantially above flight frequencies. This may put smaller bees at a competitive disadvantage because even at the maximum floral vibration frequency of 400 Hz, their inability to achieve comparable thoracic displacements as larger bees would result in generating vibrations with lower amplitudes, and thus less total pollen ejected for the same foraging effort.  相似文献   

4.

Background  

Social insects show considerable variability not only in social organisation but also in the temporal pattern of nest cycles. In annual eusocial sweat bees, nest cycles typically consist of a sequence of distinct phases of activity (queen or workers collect food, construct, and provision brood cells) and inactivity (nest is closed). Since the flight season is limited to the time of the year with sufficiently high temperatures and resource availability, every break reduces the potential for foraging and, thus, the productivity of a colony. This apparent waste of time has not gained much attention.  相似文献   

5.
6.
Bumblebee workers vary greatly in size, unlike workers of most other social bees. This variability has not been adequately explained. In many social insects, size variation is adaptive, with different-sized workers performing different tasks (alloethism). Here we established whether workers of the bumblebee, Bombus terrestris (L.) (Hymenoptera; Apidae), exhibit alloethism. We quantified the size of workers engaging in foraging compared to those that remain in the nest, and confirmed that it is the larger bees that tend to forage (X±SE thorax widths 4.34±0.01 mm for nest bees and 4.93±0.02 mm for foragers). We then investigated whether large bees are better suited to foraging because they are able to transport heavier loads of food back to the nest. Both pollen and nectar loads of returning foragers were measured, demonstrating that larger bees do return with a heavier mass of forage. Foraging trip times were inversely related to bee size when collecting nectar, but were unrelated to bee size for bees collecting pollen. Overall, large bees brought back more nectar per unit time than small bees, but the rate of pollen collection appeared to be unrelated to size. The smallest foragers had a nectar foraging rate close to zero, presumably explaining why foragers tend to be large. Why might larger bees be better at foraging? Various explanations are considered: larger bees are able to forage in cooler conditions, may be able to forage over larger distances, and are perhaps also less vulnerable to predation. Conversely, small workers are presumably cheaper to produce and may be more nimble at within-nest tasks. Further research is needed to assess these possibilities. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

7.
Honeybees selected for the colony level phenotype of storing large quantities of pollen (pollen hoarding) in the nest exhibit greater walking activity than those selected against pollen hoarding. In this study, we use a simple walking assay to demonstrate that walking activity increases with the proportion of high pollen-hoarding alleles in pure and backcrossed strains of bees (high-strain bees > offspring generated from a high backcross > offspring generated from a low backcross > low-strain bees). The trait is heritable but is not associated with markers linked to three quantitative trait loci (QTL) mapped for their effects on pollen hoarding with demonstrated pleiotropic effects on pollen and nectar foraging and learning behavior. However, locomotion in non-selected bees is correlated with responsiveness to sucrose, a trait that correlates with foraging and learning behavior. We propose that pollen-hoarding behavior involves a syndrome of behavioral traits with complex genetic and regulatory architectures that span sensory sensitivity, foraging behavior, and learning. We propose that locomotor activity is the component of this syndrome and reflects the early maturation of the bees that become pollen foragers.  相似文献   

8.
Central-place foragers, such as bumble bees, are often constrained by their location when collecting resources to provide their young. We compared the resource use (pollen diets) among seven feral colonies of Bombus ardens located in an area of 2.5 × 2.5 km2. Because this area was likely to be within their maximum foraging distance, most floral resources could have been accessible to all colonies alike. Similarities in pollen diets among these colonies may suggest that the surrounding resources determine resources use, while deviations from this could reveal other factors that affect resources use among colonies. We examined if colonies showed similarities in pollen diets and if colonies do differ in pollen diets, we investigated whether factors, such as establishment year, colony size, and location, affected the colony pollen diets. We found that while the choices of floral resources were similar, the proportional use of the floral resources were significantly different, suggesting that the surrounding resources do not solely determine resource use among colonies. Further analyses showed that the dissimilarity of pollen diets between two colonies increased as spatial distance decreased, as the temporal distances increased, and as the difference in colony size increased. We found that other than differences in annual variances of resources distribution, colony size was the prominent factor that affected the resource use of our seven colonies. We propose that colony-size-dependent work-force differences and other unidentified colony-size-related factors could have significant effects on floral use among colonies overlapping spatially and temporally.  相似文献   

9.
The vibration signal is one of the most commonly occurring communication displays in honey bee (Apis mellifera) colonies. It may function in a ‘modulatory’ manner, because it causes a nonspecific increase in activity that enhances a variety of behaviors depending upon the age and caste of the recipient. We examined honey bee workers that performed vibration signals on other workers in three observation hives, each containing a population of marked bees of known age. In all three colonies, the mean age of the first performance of the vibration signal was significantly different from the mean age at which workers first performed waggle dances, carried pollen loads, or attended the queen. However, workers of all ages, except those less than 3 d old, could perform vibration signals. In older workers of foraging age, signal performance was most closely associated with recent foraging success. Younger workers that vibrated did not appear to be early-maturing foragers and thus their signals were probably not influenced by food collection. Rather, for these preforaging-age workers, signal performance was associated more with periods of orientation flight, during which younger bees learn the location of the nest and surrounding landmarks. Thus, the vibration signal may be triggered by different stimuli in different worker age classes. Because it elicits a general increase in activity in all recipients, the signal may help adjust many different colony behaviors simultancously to changes in foraging success and colony development.  相似文献   

10.
A saguaro cactus (Cereus giganteus) produces an average of 295 flowers per season, each of which produces 286 mg fresh weight of pollen and 543 mg of nectar containing 24% sugar. At 7600 pollen grains/mg pollen, the yearly output per saguaro plant is 6.4×108 grains. Based on the measured saguaro density of 6.56 plants/ha, 553 g/ha of pollen is produced yearly. The enormous variation among individual plants in terms of flower numbers and floral bloom patterns is documented.Honey bees (Apis mellifera L.), the main collectors of saguaro pollen, collect an average of 12.2 mg pollen per foraging trip and can thus harvest 23.5 pollen loads from one flower. An average honey bee colony collects 290 g of saguaro pollen over the season, which is 24.4% of their total intake. Individual colonies exhibit wide variation in pollen collecting activities with some closely tracking the pollen resource and others almost totally ignoring it. The average for seven colonies indicates that even though variation is great the overall trend is toward closely tracking and exploiting the saguaro pollen resource. Based on the pollen productivity of saguaro and a hypothetical 90% pollen harvesting efficiency of bees, the pollen harvest potential of the saguaro environment is 1.72 colony equivalents of pollen/ha and 0.5/ha for saguaro alone. This is the first quantitative reporting of the total pollen productivity and pollen resource utilization for any plant and an opportunistic pollinator.  相似文献   

11.
Bumble bees can forage on a large number of wild plants and crops. The survival of a colony depends on the availability of suitable food resources within foraging range and throughout their forage season. We studied the spatial and temporal use of floral resources by bumble bees in a set of 30 local plant communities and used these data to model colony survival under different combinations of patch size and bumble bee flight distance. Floral resources vary spatially and temporally at the landscape level, and bumble bees track these resources across the landscape during the season. The simulation model showed that different patterns of resources availability could affect the survival and distribution of bumble bee nests across the landscape. This model can be used to generate hypotheses explaining bumble bee richness and abundance that can be tested in real landscapes. Integrating the spatial and temporal dynamics of the flower resources used by bumble bees provides a new perspective that can be used to inform bumble bee conservation, particularly in the context of their widespread decline in recent decades.  相似文献   

12.
Increasing human land use for agriculture and housing leads to the loss of natural habitat and to widespread declines in wild bees. Bee foraging dynamics and fitness depend on the availability of resources in the surrounding landscape, but how precisely landscape related resource differences affect bee foraging patterns remains unclear. To investigate how landscape and its interaction with season and weather drive foraging and resource intake in social bees, we experimentally compared foraging activity, the allocation of foragers to different resources (pollen, nectar, and resin) and overall resource intake in the Australian stingless bee Tetragonula carbonaria (Apidae, Meliponini). Bee colonies were monitored in different seasons over two years. We compared foraging patterns and resource intake between the bees'' natural habitat (forests) and two landscapes differently altered by humans (suburban gardens and agricultural macadamia plantations). We found foraging activity as well as pollen and nectar forager numbers to be highest in suburban gardens, intermediate in forests and low in plantations. Foraging patterns further differed between seasons, but seasonal variations strongly differed between landscapes. Sugar and pollen intake was low in plantations, but contrary with our predictions, it was even higher in gardens than in forests. In contrast, resin intake was similar across landscapes. Consequently, differences in resource availability between natural and altered landscapes strongly affect foraging patterns and thus resource intake in social bees. While agricultural monocultures largely reduce foraging success, suburban gardens can increase resource intake well above rates found in natural habitats of bees, indicating that human activities can both decrease and increase the availability of resources in a landscape and thus reduce or enhance bee fitness.  相似文献   

13.
Shalene Jha  John H. Vandermeer 《Oikos》2009,118(8):1174-1180
It is hypothesized that two main factors drive the foraging patterns of native and exotic species: food resource availability and habitat composition. These factors are particularly relevant for native bees and exotic honeybees, essential crop pollinators that are sensitive to floral resources and habitat management, and that have recently exhibited alarming population declines. Mechanisms driving native and exotic bee foraging patterns may critically depend on floral resource availability and habitat composition, yet the impacts of these factors on bee foraging have never been simultaneously analyzed. In a coffee producing region in southern Mexico, we investigated the influence of coffee floral resource levels and habitat management on native and exotic bee foraging. We measured the amount of flowering coffee available at multiple spatial scales within two distinct agroforestry habitat types (high-shade and low-shade coffee) and recorded visits to coffee flowers, documenting bee species, visit duration and visit frequency. We observed a significantly greater number of visits in high-shade coffee habitats than in low-shade coffee habitats for both native and exotic bees. In high-shade coffee habitats, native solitary bee and native social bee visitation decreased significantly in response to increasing floral resource availability, exhibiting a 'dilution effect' at the smallest spatial scale. In contrast, in low-shade coffee habitats, Africanized honeybees exhibited a 'concentration effect', increasing visitation significantly in response to increasing floral resource availability at the largest spatial scale. This study is the first to show that foraging patterns of native bees and exotic honeybees contrast in response to floral resource level and scale and that this response is mediated by the vegetation management of the local habitat.  相似文献   

14.
1. Habitat loss and fragmentation potentially affect the performance of bees that forage nectar and pollen of plants in their habitats. In forest landscapes, silvicultural conifer plantations often have reduced and fragmented natural broadleaf forests, which seem to provide more floral resources for bees than do the plantations. 2. This study evaluated the effects of forest characteristics (i.e. elevation, area, edge length, and tree size of natural forests) on pollen diets (plant taxa assemblages of pollen grains in provisions) and total provision mass in oviposited chambers in nests made by a standardised number of Osmia cornifrons bees at 14 sites in a forestry area in central Japan. 3. From April to May, the numbers of nests and chambers per nest increased, and the provision mass per chamber decreased. Main pollen sources were Prunus at higher elevations in April and Wisteria at lower elevations in May, foraging on which increased the numbers of nests and chambers per nest. The provision mass per chamber was smaller at higher elevations in more fragmented natural forests. Decreases in the area of natural forests within the foraging range (400‐m radii) of O. cornifrons increased the utilisation of Rubus pollen and decreased the total provision mass. 4. These findings suggest that the loss and fragmentation of natural broadleaf forests change pollen diets and reduce the provision mass of mason bees, which may reduce the number and size of their offspring.  相似文献   

15.
Most bees forage for floral resources during the day, but temporal patterns of foraging activity vary extensively, and foraging in dim-light environments has evolved repeatedly. Facultative dim-light foraging behaviour is known in five of nine families of bees, while obligate behaviour is known in four families and evolved independently at least 19 times. The light intensity under which bees forage varies by a factor of 108, and therefore the evolution of dim-light foraging represents the invasion of a new, extreme niche. The repeated evolution of dim-light foraging behaviour in bees allows tests of the hypothesis that behaviour acts as an evolutionary pacemaker. With the exception of one species of Apis , facultative dim-light foragers show no external structural traits that are thought to enable visually mediated flight behaviour in low-light environments. By contrast, most obligate dim-light foragers show a suite of convergent optical traits such as enlarged ocelli and compound eyes. In one intensively studied species ( Megalopta genalis ) these optical changes are associated with neurobiological changes to enhance photon capture. The available ecological evidence suggests that an escape from competition for pollen and nectar resources and avoidance of natural enemies are driving factors in the evolution of obligate dim-light foraging.  相似文献   

16.
A major challenge in habitat restoration is targeting the key aspects of a species' niche for enhancement, particularly for species that use a diverse set of habitat features. However, restoration that focuses on limited aspects of a species' niche may neglect other resources that are critical to population persistence. We evaluated the ability of native plant hedgerows, planted to increase pollen and nectar resources for wild bees in agricultural landscapes, to provide suitable nesting habitat and enhance nesting rates of ground‐nesting bees. We found that, when compared to unmanaged field edges (controls), hedgerows did not augment most indicators of nest habitat quality (bare ground, soil surface irregularity, and soil hardness), although coarser soils were associated with higher incidence and richness of nesting bees. Hedgerows did not augment nesting rates when compared to control edges. Although all the bee species we detected nesting were also found foraging on floral resources, the foraging versus nesting assemblages found within a site were highly dissimilar. These results may reflect sampling error; or, species found foraging but not nesting in hedgerows could be utilizing hedgerows as “partial habitats,” nesting outside hedgerow plantings but foraging on the floral resources they provide. We conclude that although hedgerows are known to provide critical floral resources to wild bees especially in resource‐poor intensive agricultural landscapes, simply increasing vegetative diversity and structure may not be simultaneously enhancing nesting habitat for ground‐nesting bees.  相似文献   

17.
1. Honey bees (Apis mellifera) prefer foraging at compound‐rich, ‘dirty’, water sources over clean water sources. As a honey bee's main floral diet only contains trace amounts of micronutrients – likely not enough to sustain an entire colony – it was hypothesised that honey bees forage in dirty water for physiologically essential minerals that their floral diet, and thus the colony, may lack. 2. While there are many studies regarding macronutrient requirements of honey bees, few investigate micronutrient needs. For this study, from 2013 to 2015, a series of preference assays were conducted in both summer and autumn. 3. During all field seasons, honey bees exhibited a strong preference for sodium in comparison to deionised water. There was, however, a notable switch in preferences for other minerals between seasons. 4. Calcium, magnesium, and potassium – three minerals most commonly found in pollen – were preferred in autumn when pollen was scarce, but were avoided in summer when pollen was abundant. Thus, as floral resources change in distribution and abundance, honey bees similarly change their water‐foraging preferences. 5. Our data suggest that, although they are generalists with relatively few gustatory receptor genes, honey bee foragers are fine‐tuned to search for micronutrients. This ability likely helps the foragers in their search for a balanced diet for the colony as a whole.  相似文献   

18.
In groups of cooperatively foraging individuals, communication may improve the group’s performance by directing foraging effort to where it is most useful. Honey bees (Apis mellifera) use a specialized dance to communicate the location of floral resources. Because honey bees dance longer for more rewarding resources, communication may shift the colony’s foraging effort towards higher quality resources, and thus narrow the spectrum of resource types used. To test the hypothesis that dance communication changes how much honey bee colonies specialize on particular resources, we manipulated their ability to communicate location, and assessed the relative abundance of different pollen taxa they collected. This was repeated across five natural habitats that differed in floral species richness and spatial distribution. Contrary to expectation, impairing communication did not change the number or diversity of pollen (resource) types used by individual colonies per day. However, colonies with intact dance communication were more consistent in their resource use, while those with impaired communication were more likely to collect rare, novel pollen types. This suggests that communication plays an important role in shaping how much colonies invest in exploring new resources versus exploiting known ones. Furthermore, colonies that did more exploration also tended to collect less pollen overall, but only in environments with greater floral abundance per patch. In such environments, the ability to effectively exploit highly rewarding resources may be especially important–and dance communication may help colonies do just that. This could help explain how communication benefits honey bee colonies, and also why it does so only under certain environmental conditions.  相似文献   

19.
We investigated the ability of naturally foraging female bumble bees (Bombus occidentalis) to recognize their nest entrance in the field. In a blind binary-choice paradigm, females discriminated between nest entrances tipped with caps from their own nest entrances and entrances tipped with caps previously associated with foreign heterospecific or foreign conspecific colonies. Washing caps in organic solvents eliminated the manifestation of this nest-entrance recognition and significantly decreased the episodes of antennating caps. These results indicate that bees deposit colony-specific chemicals on nest entrances that are later perceived via contact chemoreception. Females treated foreign heterospecific and foreign conspecific caps similarly, suggesting that bees may not assess or respond to the degree of similarity between their own colony odor and a foreign colony odor.  相似文献   

20.
Identifying resource preference is considered essential for developing targeted conservation plans but, for many species, questions remain about the best way to estimate preference. Resource preferences for bees are particularly difficult to determine as the resources they collect, nectar and pollen, are challenging to estimate availability and collection. Resources are traditionally measured at the flower or inflorescence level, but these measures of availability do not correspond to the resources actually used by bees. Additionally, it is unclear as to whether common models including availability are appropriate for bees which may target resources regardless of available quantities. Here we first compare two common hypotheses of resource use – the ‘random use hypothesis’ and the ‘linear preferences hypothesis’ – using three different measures of availability (pollen, flower and inflorescence) – to determine if one measure of availability was better for understanding bee pollen use. Next, the superior model using availability was compared to a novel model of bee pollen use the ‘target use hypothesis’. This model assumes that bees target some resources regardless of how much of each resource is available (but assuming resources are present at a site), and thus models preference without availability data. Of the models including availability, the linear preference model using inflorescence availability best explained the pollen use data. This suggests that bumblebee pollen use is non‐random and that cues to identify and locate resources (i.e. display size and quantity) may be more important than the quantity of the resource available (i.e. pollen availability). Additionally, in most cases the target use model explained the data equal to or better than the other models suggesting bee resource use may be better modeled without measured availability data compared to linear models. These results could be important for expanding resource use analysis of bees that are difficult to quantify availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号