首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The total production of plant litter and the proportion of leaf litter are higher in riparian corridors than in upland ecosystems throughout the world. Periodical water-level fluctuation is believed to be the major cause of these differences. During flood periods, much plant litter is redistributed locally and between regions, following erosion, transport, and deposition of litter. The importance of litter redistribution varies with factors such as flood regime, topography, and vegetation. Litter from the riparian corridor is usually a major constituent of the litter transported by the river. The decomposition of litter is faster in riparian corridors than in upland systems due to a higher rate of leaching and a higher decomposer activity. Relative warmth and soil fertility may also enhance litter decomposition in riparian corridors. In general, accumulated litter affects plants physically by burying them, chemically by adding nutrients and phytotoxins, and biologically by adding diaspores. The physical impact of a certain amount of litter may be weaker in riparian corridors than in uplands because the rapid decomposition reduces the time that litter is present. In other words, higher amounts of litter are needed to affect riparian vegetation than are needed to affect other types of vegetation. The nutrient content of riverborne litter is reduced by leaching, but dissolved nutrients from litter might still reach the riparian vegetation, e.g., by adsorbing to inorganic particles. Phytotoxins are probably unimportant in riparian systems. The input to the riparian corridor of plant diaspores, borne by litter packs in the river, may be large. Indirect biological effects of litter, including its diaspores, are the attracting of animals and microbes that may influence the plant community, and the creation of bare soil for plant colonization.  相似文献   

2.
河岸带是维持生物多样性的重要生态系统之一。然而,由于过度放牧引起的植被消耗和过度开垦等人类活动的干扰,河岸带植被多样性和植被盖度受到严重的破坏,甚至威胁了河道的稳定性。围栏封育在退化草地生态系统修复中被广泛应用,但对退化河岸带植被群落和土壤性质的影响尚不明确。本研究的目的旨在明确围封的实施是否会促进河岸带植被群落的物种组成、物种丰富度和物种多样性恢复,土壤氧分如何随围封年限的增加而变化。辽河干流自2012年起被围栏封育管理,本研究在辽河干流河岸带沿岸设置了20个草本群落长期观测样地,记录了2012–2017年样地中植被高度、盖度和个体数量等参数用于物种丰富度和物种多样性的统计分析。同时,分别测定了2012年和2017年植被群落土壤氧分含量,验证了植被群落和土壤氧分对围封的反馈,研究了2012–2017年辽河干流河岸带的围栏封育对物种多样性和土壤氧分的影响。结果表明,随着围封年限的增加,辽河干流河岸带草本群落植被丰富度和多样性显著增加。物种组成方面,菊科植物的优势度显著增加,禾本科植物优势度显著下降。围封后植被群落的恢复和禁止耕作,加速了土壤中磷和钾的消耗,表现为显著降低,土壤有机质含量对围封的响应表现的相对滞后,并没有显著变化。综上所述,本研究为河岸带植被群落物种多样性、物种组成对围封的响应提供了新的见解。  相似文献   

3.
Tropical forests around the world have been lost, mainly because of agricultural activities. Linear elements like riparian vegetation in fragmented tropical landscapes help maintain the native flora and fauna. Information about the role of riparian corridors as a reservoir of bat species, however, is scanty. We assessed the value of riparian corridors on the conservation of phyllostomid bat assemblage in an agricultural landscape of southern Mexico. For 2 years (2011–2013), mist‐netting at ground level was carried out twice during the dry season (December to May) and twice during the wet season (June to November) in different habitats: (1) riparian corridors in mature forest, (2) riparian corridors in pasture, (3) continuous forest away from riparian vegetation, and (4) open pastures. Each habitat was replicated three times. To determine the influence of vegetation structure on bat assemblages, all trees (≥10 cm dbh) were sampled in all habitats. Overall, 1752 individuals belonging to 28 species of Phyllostomidae were captured with Sternodermatinae being the most rich and abundant subfamily. Riparian corridors in mature forest and pastures had the greatest species richness and shared 65% of all species. Open pastures had the lowest richness and abundance of bats with no Phyllostominae species recorded. Six of the 18 species recorded could be considered as habitat indicators. There was a positive relationship between bat species composition and tree basal area. Our findings suggest that contrary to our expectations, bats with generalist habits and naturally abundant could be useful detector taxa of habitat modification, rather than bats strongly associated with undisturbed forest. Also in human‐dominated landscapes, the maintenance of habitat elements such as large trees in riparian corridors can serve as reservoirs for bat species, especially for those that are strongly associated with undisturbed forest.  相似文献   

4.
青藏高原黄河上游河岸带是典型的生态脆弱区, 然而近年来气候变暖加剧了该地极端旱涝事件的频繁发生, 高原河岸带生态脆弱区植被是否能够应对极端旱涝事件的干扰成为流域生态环境管理工作所关注的重点问题。为了研究黄河上游河岸林中主要树种对极端旱涝的响应, 该研究选取青海省同德县和兴海县3处河岸林中的47株甘蒙柽柳(Tamarix austromongolica), 分别从树干面向邻近山体一侧及与之垂直的一侧分别获取1根树轮样本, 分析其历史生长。通过对比两个方向上的生长速率判断甘蒙柽柳是否受到地质灾害影响从而将其划分为受伤组和对照组, 分析两组甘蒙柽柳在过去63年中径流极值年的抵抗力状况及两个方向的生长差异。研究发现, 甘蒙柽柳对干旱和洪涝均有着很强的抵抗力, 河岸带多样化的水分来源有助于甘蒙柽柳在极端干旱环境中较好地生长; 但洪涝伴随泥石流等地质灾害的频发使甘蒙柽柳面向山体侧面受到严重的生长抑制, 表现出显著的方向性差异, 从而影响甘蒙柽柳的形态。较长的创伤恢复期带来的遗留效应可能造成甘蒙柽柳对外界干扰的较高敏感性。研究黄河上游甘蒙柽柳生长对极端旱涝的响应, 将有助于评估生态脆弱区生态弹性过程, 同时为高原河岸带生态建设和恢复提供科学依据。  相似文献   

5.
Data on the response of bird communities to surface mining and habitat modification are limited, with virtually no data examining the effects of mining on bird communities in and along riparian forest corridors. Bird community composition was examined using line transects from 1994 to 2000 at eight sites within and along a riparian forest corridor in southwestern Indiana that was impacted by an adjacent surface mining operation. Three habitats were sampled: closed canopy, riparian forest with no open water; fragmented canopy, riparian forest with flood plain oxbows; and reclaimed mined land with constructed ponds. Despite shifts in species composition, overall bird species richness, measured as the mean number of bird species recorded/transect route, did not differ among habitats and remained unchanged across years. More species were recorded solely on mined land than in either closed forest or forested oxbow habitats. Mined land provided stopover habitat for shorebirds and waterfowl not recorded in other habitats, and supported an assemblage of grassland-associated bird species weakly represented in the area prior to mining. A variety of wood warblers and other migrants were recorded in the forest corridor throughout the survey period, suggesting that, although surface mining reduced the width of the forest corridor, the corridor was still important habitat for movement of forest-dependent birds and non-resident bird species in migration. We suggest that surface mining and reclamation practices can be implemented near riparian forest and still provide for a diverse assemblage of bird species. These data indicate that even narrow (0.4 km wide) riparian corridors are potentially valuable in a landscape context as stopover habitats and routes of dispersal and movement of forest-dependent and migratory bird species.  相似文献   

6.
River flow is a major driver of morphological structure and community dynamics in riverine-floodplain ecosystems. Flow influences in-stream communities through changes in water velocity, depth, temperature, turbidity and nutrient fluxes, and perturbations in the organisation of lower trophic levels are cascaded through the food web, resulting in shifts in food availability for consumer species. River birds are sensitive to spatial and phenological mismatches with aquatic prey following flow disturbances; however, the role of flow as a determinant of riparian ecological structure remains poorly known. This knowledge is crucial to help to predict if, and how, riparian communities will be influenced by climate-induced changes in river flow characterised by more extreme high (i.e. flood) and/or low (i.e. drought) flow events. Here, we combine national-scale datasets of river bird surveys and river flow archives to understand how hydrological disturbance has affected the distribution of riparian species at higher trophic levels. Data were analysed for 71 river locations using a Generalized Additive Model framework and a model averaging procedure. Species had complex but biologically interpretable associations with hydrological indices, with species’ responses consistent with their ecology, indicating that hydrological-disturbance has implications for higher trophic levels in riparian food webs. Our quantitative analysis of river flow-bird relationships demonstrates the potential vulnerability of riparian species to the impacts of changing flow variability and represents an important contribution in helping to understand how bird communities might respond to a climate change-induced increase in the intensity of floods and droughts. Moreover, the success in relating parameters of river flow variability to species’ distributions highlights the need to include river flow data in climate change impact models of species’ distributions.  相似文献   

7.
Recent theoretical and field studies show that stochastic, extreme ecological events may influence the dynamics of populations for many years. However, to date, studies have focused only on the short-term effect of ecological catastrophes and/or extremes on population dynamics. In this paper, we present results from the great flood of July 1997 in Central and Eastern Europe and how it affected the white stork (Ciconia ciconia), a long-lived bird species. Using long-term data collected in 1987–2003, we examined the effect of the great flood on population size and chick production and we focussed on the 10 years preceding and 6 years following the flood. Habitats of 18 of the 25 stork populations studied were inundated during the flood of 1997. The flooded populations had a massive loss of chicks in 1997 but quickly recovered to about 85% of expected normal chick production compared to the control populations. This suggests a relatively minor but long-term consequence on population dynamics over a large geographic scale resulting from the extreme flooding event.  相似文献   

8.
Ephemeral reaches are common along desert rivers but are less well studied than those with perennial stream flow. This study contrasted riparian plant species richness and composition (extant vegetation and soil seed bank) between stream reaches with different low-flow conditions (perennial vs. ephemeral flow) but similar flood patterns and similar watershed-derived species pools. Data were collected at Cienega Creek (Arizona, USA) over a 2 year period spanning drought conditions and wetter conditions. Consistent with expectations relating to water limitation effects on diversity, species richness in the riparian zone was lower at ephemeral-flow sites during a season with minimal precipitation and no overbank flooding; under these conditions, the more permanent water sources of the perennial-flow sites sustain the larger number of species. During seasons with greater precipitation and elevated stream flows, in contrast, species richness at ephemeral-flow sites increased to levels at or slightly above those of perennial-flow sites. For values pooled across two wet seasons of a calendar year, year-round richness was greater at the two ephemeral-flow sites (total of 92 vascular plant species) than at the two perennial-flow sites (68 species). This greater year-round richness was a combination of multiple factors: greater light, space, and bare ground, a diverse soil seed bank (with the seed banks equally species-rich among hydrologic types), and moderately abundant precipitation and flooding sufficient to stimulate establishment of opportunistic species (mainly annuals) during the bimodal wet seasons. These results indicate that long-term patterns of site water availability, by influencing woody plant cover, mediate the diversity response to episodic water pulses in dryland rivers. The results also have implications for riparian conservation efforts, which to date have focused primarily on perennial stream reaches: ephemeral reaches of spatially intermittent rivers harbor many riparian plant species, and warrant conservation efforts, as well.  相似文献   

9.
Width is an essential element of the spatial configuration of riparian forests and may be fundamental in determining their corridor function. In the present study we tested the effect of forest width on floristic structure (tree species composition and diversity) in 15 fragments of riparian forest in an agricultural fragmented landscape of SE Brazil. All these fragments were chosen in a geomorphological homogeneous river reach under similar soil, topographic and human disturbance conditions in order to minimize the influence of these factors. The forest widths considered ranged from 30 to 650 m. The results showed that total species richness and climax species richness were significantly greater when we consider larger fragments, as has been observed in other studies. Nevertheless, species diversity and evenness were not significantly correlated with forest width. The analysis of species composition showed that the narrowest fragments were characterized by species well adapted to temporary flood conditions, while medium and wide fragments showed a composition typical of drier upland areas. Therefore, the effect of forest width on floristic structure appears to be more strongly linked to the effect of river floods in the case of the fragments studied. The existence in riparian corridors of a drier forest, in general richer and more diversified than the annually flooded forest, seems to favor the maintenance of regional species diversity in fragmented landscapes.  相似文献   

10.
The size and species composition of the soil seed-bank in a remnant patch of each of three structurally and floristically distinct rainforests (Complex Mesophyll Vine Forest, Complex Notophyll Vine Forest and Semi-Evergreen Vine Thicket) were assessed. Seeds of 94 species germinated from 12 surface soil samples collected from each site. All three seed-banks were composed mostly of herbs characteristic of roadsides and agricultural land, and pioneer rainforest trees and shrubs. Agglomerative classifications indicated that the seed-bank samples from each rainforest remnant had a characteristic species composition and could be distinguished reliably from seed-bank samples drawn from other sites. Seeds of species present in the standing forest were poorly represented in the seed-banks except for one long-lived pioneer tree, Dendrocnide photinophylla, at one site. The seed-bank from the seasonally dry vine thicket was significantly larger (4000 seeds m-2) than those from the two moister sites (400–600 seeds m-2, contained more seeds of roadside and agricultural herbs, and fewer seeds of rainforest pioneer and secondary shrubs and trees. We suggest three explanations for the different seed-bank structure observed in the seasonally dry forest site. First, with increased deciduousness in rainforests, seed-banks are increasingly subject to invasion and domination by seeds of rapidly maturing herbs. Second, long-lived seeds that germinate in canopy gaps would be less likely to accumulate under deciduous forests because they would he exposed annually to conditions suitable for germination. Third, chronic disturbance by cattle and pigs produces sites suitable for the establishment of rapidly maturing herbs, and possibly disperses their seeds into the forest.  相似文献   

11.
In December 2010, the highest recorded Queensland rainfall associated with Tropical Cyclone ‘Tasha’ caused flooding of the Fitzroy River in Queensland, Australia. A massive flood plume inundated coral reefs lying 12 km offshore of the Central Queensland coast near Yeppoon and caused 40–100% mortality to coral fringing many of the islands of Keppel Bay down to a depth of ∼8 m. The severity of coral mortality was influenced by the level of exposure to low salinity seawater as a result of the reef''s distance from the flood plume and to a lesser extent, water depth and whether or not the reef faced the plume source. There was no evidence in this study of mortality resulting from pollutants derived from the nearby Fitzroy Catchment, at least in the short term, suggesting that during a major flood, the impact of low salinity on corals outweighs that of pollutants. Recovery of the reefs in Keppel Bay from the 2010/2011 Fitzroy River flood is likely to take 10–15 years based on historical recovery periods from a similar event in 1991; potentially impacting visitor numbers for tourism and recreational usage. In the meantime, activities like snorkeling, diving and coral viewing will be focused on the few shallow reefs that survived the flood, placing even further pressure on their recovery. Reef regeneration, restoration and rehabilitation are measures that may be needed to support tourism in the short term. However, predictions of a warming climate, lower rainfall and higher intensity summer rain events in the Central and Coastal regions of Australia over the next decade, combined with the current anthropogenic influences on water quality, are likely to slow regeneration with consequent impact on long-term reef resilience.  相似文献   

12.
This work deals with the structure of Collembolan communities in riparian habitats. Sixty samples collected along running waters in a Pyrenean massif have been analysed. Diversity was much higher than for any comparable habitat studied in the literature. The proportion of rare species was particularly high, and explained a large part of the observed diversity. The contribution of specialized hydrophilous species to overall diversity was low: they were 5 times less numerous than non-hydrophilous species for a similar global abundance. Correspondence analysis showed that the riparian community was loosely structured, without any strong determining factor. Epigeomorphic species of hydrophilous Collembola were, however, clustered in a well-defined group. The forest type, of major importance for soil fauna diversity in the area, was a poor predictor of diversity in the riparian habitats. Conversely, richness was significantly related to distance from water, in spite of the samples having been all collected from permanently water-saturated substrates. The importance of non-hydrophilous species for the diversity of riparian habitats along running water is interpreted as reflecting the ecological permeability of the hydrophilous community, resulting from the spatial organisation of the habitat in narrow strips, and its frequent disturbance by flooding. Finally, the riparian habitat may act as a refuge for a significant proportion of the soil species affected by reafforestation, presently the most severe disturbance of Pyrenean ecosystems.  相似文献   

13.
The germinable soil seed-store of the northern jarrah (Eucalyptus marginata Donn ex Sm.) forest was found to average 767 seeds m?2 (range:377–1579 seeds m?2) over six randomly selected plots within a range of forest sites. A total of 68 different taxa of vascular plants were recognized following heating and glasshouse tray germination tests of field-collected soils. Both the qualitative and quantitative composition of the soil seed-bank were dominated by annuals and sub-shrubs. Because less than 10% of the seed of the soil was from species of the dominant tree and woody shrub strata, there were major floristic differences between the existing flora and the composition of the soil seed-bank. The influences of the soil seed-bank on rehabilitation of disturbed jarrah forest lands and current fire management are discussed.  相似文献   

14.
Ungulate herbivory can impact riparian vegetation in several ways, such as by reducing vigor or reproductive output of mature plants, and through increased mortality of seedlings and saplings. Much work has focused on the effects of livestock grazing within riparian corridors, while few studies have addressed the influence of native ungulate herbivory on riparian vegetation. This study investigated the effect of deer herbivory on riparian regeneration along three streams with degraded riparian corridors in Mendocino County, California. We utilized existing stream restoration efforts by private landowners and natural resource agencies to compare six deer exclosures with six upstream control plots. Livestock were excluded from both exclosure and control plots. Three of the deer exclosures had been in place for 15 years, one for 6 years, and two for 4 years. The abundance and size distribution of woody riparian plant species such as Salix exigua, S. laevigata, S. lasiolepis, Alnus rhombifolia, and Fraxinus latifolia were quantified for each exclosure and control plot. The mean density of saplings in deer exclosures was 0.49 ± 0.15/m2, while the mean density of saplings in control plots was 0.05 ± 0.02/m2. Within exclosures, 35% of saplings were less than 1 m and 65% were greater than 1 m; within control plots, 97% of saplings were less than 1 m in height. The fact that little regeneration had occurred in control plots suggests that deer herbivory can substantially reduce the rate of recovery of woody riparian species within degraded riparian corridors. Exclusionary fencing has demonstrated promising results for riparian restoration in a region with intense deer herbivory.  相似文献   

15.
Invasive plants pose substantial threats to protected areas globally. Although management can limit impacts, spread and reinvasion from neighbouring areas into protected areas are a major and an on‐going problem for land managers. However, identifying the main sources of propagules and the dimensions of invasion pathways is challenging. This study used population genetic markers [inter simple sequence repeats (ISSRs) and amplified fragment length polymorphisms (AFLPs)] to infer the source(s) of re‐colonization and dispersal patterns for a typical invader of riparian and terrestrial habitats (Lantana camara) along the Sabie‐Sand catchment, one of the most important river systems flowing into and across South Africa’s flagship protected area, the Kruger National Park (KNP). Results indicate that populations located along the lower reaches of the Sabie and Sand tributaries harboured substantially higher genetic diversity than those in the upper Sabie catchment. Bayesian assignments indicated that the upper Sabie tributary contributed far fewer propagules than the Sand tributary to the lower Sabie River. Current invasion patterns are due to a combination of a major flood event in 2000 and differences in the degree to which the upstream reaches were managed after the flooding. The major flood of 2000 effectively cleared lantana from the riparian areas. However, whereas on‐going management efforts against riparian species in the KNP have been effective, rendering the upper Sabie relatively clear of lantana, only a small part of the Sand tributary falls under jurisdiction of the KNP and has received consistent management attention. The reinvasion of the lower Sabie in the KNP was therefore almost entirely by propagules from the Sand tributary. The study highlights the important role that molecular tools can play in determining dispersal dynamics and directing invasive species management. For invasive plant species that invade both riparian habitats and landscapes away from rivers in protected areas, such as lantana, management must focus on all major sources of propagules to limit reinvasion.  相似文献   

16.
Ants are the dominant soil faunal group in many if not most terrestrial ecosystems, and play a key role in soil structure and function. This study documents the impacts of invasion by the exotic cat’s claw creeper vine, Macfadyena unguis-cati (L.) Gentry (Bignoniaceae) on surface-situated (epigaeic) and subterranean (hypogaeic) ant communities in subtropical SE Queensland Australia where it is a major environmental weed of riparian areas, rainforest communities and remnant natural vegetation, smothering standing vegetation and causing canopy collapse. Soil ants were sampled in infested and uninfested areas at eight sites spanning both riparian and non-riparian habitats in subtropical SE Queensland. Patterns of ant species composition and functional grouping in response to patch invasion status, landscape type and habitat stratum were investigated using ANOVA and non-metric multidimensional scaling ordination. The epigaeic and subterranean strata supported markedly different ant assemblages, and ant communities also differed between riparian and non-riparian habitats. However, M. unguis-cati invasion had a surprisingly limited impact. There was a tendency for ant abundance and species richness to be lower in infested patches, and overall species composition was different between infested and uninfested patches, but these differences were relatively small, and did not occur consistently across sites. There were changes in functional group composition that conformed to known functional group responses to environmental change, but these were similarly limited and inconsistent across sites. Our study has shown that ant communities are surprisingly resilient to invasion by M. unguis-cati, and serves as a warning against making assumptions about invasion impacts based on visual appearances.  相似文献   

17.
The substantial increase in elephant populations across many areas in southern Africa over past decades is prompting concerns about the effects on biodiversity. We investigated the outcomes of elephant disturbance on tree-species presence, density, and richness, and on alpha and beta diversity within riparian woodland in Chobe National Park, Botswana. We enumerated all tree species occurring in 32 plots (0.06 ha) along the Chobe riverfront. Plots were stratified by soil type (nutrient-rich alluvium vs. nutrient-poor Kalahari sand covering alluvium) and elephant impact (high vs. low impact on both soil types). We tested four predictions: elephants reduce tree density, richness, and alpha diversity; beta diversity is greater in vegetation subjected to high elephant impact; elephant impact on tree-species composition is greater on nutrient-poor than on nutrient-rich soil; and the loss or decline of abundant tree species on heavily disturbed sites is offset by an increase in abundance of functionally similar species, ones that are minor on lightly disturbed sites. Elephant browsing substantially affected tree-species composition, reducing density, species richness, evenness, and alpha diversity but had no effect on beta diversity. The dominant species on relatively undisturbed areas were partly replaced by functionally similar species on heavily disturbed sites. Soil type influenced species composition on lightly disturbed sites but was less important at higher elephant densities. Our findings are important for areas with extreme dry-season densities of elephants but should not be extrapolated to infer purported effects of elephants on tree diversity at lower densities.  相似文献   

18.
The influence of afforestation with cedars on field layer vegetation and on the germinable soil seed-bank were investigated along a 60-m transect merging from open grassland to sparse and dense canopy cover. A total of 132 species were found, 76 in the seed-bank and 109 in the vegetation, with 53 species in common. Conifer cover was not found to be associated with a decrease in total number of species in the vegetation or seed-bank, but the mean number of species in the vegetation, total cover in field layer vegetation and mean number of individuals in the seed-bank decreased significantly from grassland to forest stands. The grassland seed-bank was dominated by Saxifraga tridactylites and Veronica agrestis; the seed-bank of plots of scattered cedars was dominated by Trifolium incarnatum ssp. molinerii; and that of dense cedar plantations was dominated by Campanula rapunculus. The number and cover of grassland species of field layer vegetation decreased in the forest, with respect to open grassland, and the same trend was found for density of individuals in the seed-bank. It is concluded that grassland restoration by cutting cedars cannot rely on the presence of grassland species in the soil seed-bank.  相似文献   

19.
Spatial and temporal patterns of species richness in a riparian landscape   总被引:6,自引:0,他引:6  
Aim To test for control of vascular plant species richness in the riparian corridor by exploring three contrasting (although not mutually exclusive) hypotheses: (1) longitudinal patterns in riparian plant species richness are governed by local, river‐related processes independent of the regional species richness, (2) riparian plant species richness is controlled by dispersal along the river (longitudinal control), and (3) the variation in riparian plant species richness mirrors variation in regional richness (lateral control). Location The riparian zones of the free‐flowing Vindel River and its surrounding river valley, northern Sweden. Methods We used data from three surveys, undertaken at 10‐year intervals, of riparian reaches (200‐m stretches of riverbank) spanning the entire river. In addition, we surveyed species richness of vascular plants in the uplands adjacent to the river in 3.75‐km2 large plots along the same regional gradient. We explored the relationship between riparian and upland flora, and various environmental variables. We also evaluated temporal variation in downstream patterns of the riparian flora. Results Our results suggest that local species richness in boreal rivers is mainly a result of local, river‐related processes and dispersal along the corridor. The strongest correlation between species richness and the environment was a negative one between species number and soil pH, but pH varied within a narrow range. We did not find evidence for a correlation between species richness on regional and local scales. We found that the local patterns of species richness for naturally occurring vascular plants were temporally variable, probably in response to large‐scale disturbance caused by extreme floods. Most previous studies have found a unimodal pattern of species richness with peaks in the middle reaches of a river. In contrast, on two of three occasions corresponding to major flooding events, we found that the distribution of species richness of naturally occurring vascular plants resembled that of regional diversity: a monotonic decrease from headwater to coast. We also found high floristic similarity between the riparian corridor and the surrounding landscape. Main conclusions These results suggest that local processes control patterns of riparian species richness, but that species composition is also highly dependent on the regional species pool. We argue that inter‐annual variation in flood disturbance is probably the most important factor producing temporal variability of longitudinal species richness patterns.  相似文献   

20.
Reservation of forest in riparian buffers is common practice in commercial forestry areas worldwide, potentially providing valuable habitat for biodiversity dependent on mature forest. However, the habitat value of narrow reserve corridors can be compromised by edge effects. We investigated the habitat value of streamside buffers in wet eucalypt forest for ground-dwelling beetles in Tasmania, Australia. Beetles were collected with pitfall traps in five replicates of four habitats: unlogged corridors of mature forest in streamside reserves (buffers) with clearfelling-derived logging regeneration either side; continuous mature upslope forest; continuous mature riparian forest; and <20-year-old upslope clearfelling-derived logging regeneration. Streamside reserve widths on each side of the stream were on average 40 ± 6 m (±95% CI) from reserve edge to stream. Beetle assemblages in logging regeneration differed substantially from those in the unlogged habitats, including the streamside reserves. Streamside reserve assemblages nevertheless differed from those of the continuous unlogged areas. Assemblage composition in streamside reserves was most similar to that in continuous mature riparian forest, although beetle diversity was higher in the reserves. Our results suggest that although streamside reserves provide habitat for the majority of commonly collected beetle species occurring in continuous mature forest, wider reserve corridors in the wet eucalypt forests of Tasmania may be required to provide habitat that is not edge-affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号