首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water conductance through Abies amabilis seedlings was measured while the roots were exposed to temperatures from 15 to 0.25°C. Before conductance was measured, the seedlings were preconditioned for 3 months at either a high temperature (23°C) or a low temperature (3°C). For both groups of seedlings, conductance decreased as root temperature decreased. Conductance was lowest at 0.25°C. In addition, preconditioning at 3°C for 3 months significantly lowered conductance to water at all root temperatures. Under the same environmental conditions, seedlings preconditioned at 3°C had less than 25% of the transpirational water loss of seedlings preconditioned at high temperature. A decrease in leaf osmotic potential also resulted from low temperature preconditioning. In trees growing in the subalpine forest, which is the natural habitat of Abies amabilis, both decreased leaf conductance to water vapor and lower osmotic potentials were evident in winter. Since in winter the temperature of the soil in the subalpine zone remains less than 1°C for many months, lowered leaf conductance and decreased osmotic potentials appear to be mechanisms which aid in preventing desiccation damage.  相似文献   

2.
长白山地区红松树干呼吸的研究   总被引:17,自引:2,他引:17  
采用土壤呼吸气室于2003年5~10月测定了长白山阔叶红松林主要树种红松不同径阶不同方位的树干呼吸,同时监测了树干温度和林内温度.结果表明,树干呼吸速率具有明显的季节变化趋势,呈单峰曲线,8月出现最大值,2月呼吸速率最低.树干呼吸速率与树干温度具有显著幂指数关系,同时表现出大径阶树干呼吸速率与温度因子间曲线拟合效果好于小径阶红松.不同径阶树干呼吸速率均呈南面高于北面,并随树干径阶的减小南北面呼吸速率差异降低.不同径阶红松树干平均维持呼吸占总树干呼吸63.63%,红松树干径阶越大维持呼吸所占比例越大.依树干径阶大小顺序分别为66.76%、73.29%和50.84%.不同径阶红松树干呼吸Q10值在2.56~3.32之间,利用呼吸Q10值分别获得不同径阶树干RtRm的季节变化趋势.因此,当估算生态系统呼吸时应考虑树干不同部位和不同径阶之间的差异.  相似文献   

3.
Summary Of ten terpenes that comprise most of the volatiles of grand fir foliage only four were affected by addition of nitrogen. Levels of beta-phellandrene, camphene and bornyl acetate and terpinolene were significantly reduced with nitrogen added to the equivalent amount of 44.8 g/m2. A quantity of 22.4 g/m2 did not affect terpene production. Several populations were examined and these did not respond consistently on a regional basis, yet a significant interaction effect was apparent between treatment and local population response. Overall, total yield of terpenes as a function of fertilization was not altered.  相似文献   

4.
Woody tissue maintenance respiration of four conifers in contrasting climates   总被引:21,自引:0,他引:21  
We estimate maintenance respiration for boles of four temperate conifers (ponderosa pine, western hemlock, red pine, and slash pine) from CO2 efflux measurements in autumn, when construction respiration is low or negligible. Maintenance respiration of stems was linearly related to sapwood volume for all species; at 10°C, respiration per unit sapwood volume ranged from 4.8 to 8.3 mol CO2 m–3 s–1. For all sites combined, respiration increased exponentially with temperature (Q 10 =1.7, r 2=0.78). We estimate that maintenance respiration of aboveground woody tissues of these conifers consumes 52–162 g C m–2 y–1, or 5–13% of net daytime carbon assimilation annually. The fraction of annual net daytime carbon fixation used for stem maintenance respiration increased linearly with the average annual temperature of the site.  相似文献   

5.
The aim of this work was to discover whether the respiration of wheat (Triticum aestivum L. cv. Huntsman) leaves, transferred to darkness after 7 h photosynthesis, showed an initial period of wasteful respiration. For young and old leaves, CO2 production and O2 uptake after 7 h photosynthesis were up to 56% higher than at the end of an 8-h night. The maximum catalytic activities of citrate synthase (EC 4.1.3.7), aconitase (EC 4.2.1.3), fumarase (EC 4.2.1.2) and cytochrome-c oxidase (EC 1.9.3.1) at the end of the day did not differ from those at the end of the night. Changes in the contents of glucose 6-phosphate, fructose-1,6-bisphosphate, dihydroxyacetone phosphate, and -ketoglutarate did not as a group parallel the changes in the rate of respiration. The detailed distribution of label from [U-14C] sucrose supplied to leaves in the dark was similar at the end of the day and the end of the night. No correlation was observed between the rates of leaf respiration and extension growth. It is argued that the higher rate of respiration at the beginning of the night cannot be attributed to wasteful respiration.Abbreviation RQ respiratory quotient We thank Dr H. Thomas and Professor C.J. Pollock, Institute for Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, UK for their generous help in measuring leaf extension. R.H.A. thanks the Science and Engineering Research Council for a studentship.  相似文献   

6.
7.
基于4月底到9月底东北地区玉米农田土壤呼吸作用全生长季的观测,阐明了土壤呼吸作用的空间异质性特征,综合分析了水热因子、土壤性质、根系生物量及其测定位置对土壤呼吸作用空间异质性的影响,并对生长季中根系呼吸作用占土壤呼吸作用的比例进行了估算。结果表明,在植株尺度上,土壤呼吸作用存在着明显的空间异质性,较高的土壤呼吸速率通常出现在靠近玉米植株的地方。根系生物量的分布格局是影响土壤呼吸作用空间异质性的关键因素。在空间尺度上,土壤呼吸作用与根系生物量呈显著的线性关系,而土壤湿度、土壤有机质、全氮和碳氮比对土壤呼吸作用空间异质性的影响并不显著。通过建立土壤呼吸作用与玉米根系生物量的回归方程,对根系呼吸作用占土壤呼吸作用的比例进行了间接估算。玉米生长季中,根系呼吸作用占土壤呼吸作用的比例在43.1%~63.6%之间波动,均值为54.5%。  相似文献   

8.
The contribution of the organic (O) horizon to total soil respiration is poorly understood even though it can represent a large source of uncertainty due to seasonal changes in microclimate and O horizon properties due to plant phenology. Our objectives were to partition the CO2 effluxes of litter layer and mineral soil from total soil respiration (SR) and determine the relative importance of changing temperature and moisture mediating the fluxes. We measured respiration in an oak-dominated forest with or without the O horizon for 1 year within the Oak Openings Region of northwest Ohio. Mineral soil and O horizon respiration were subtracted from mineral soil respiration (MSR) to estimate litter respiration (LR). Measurements were grouped by oak phenology to correlate changes in plant activity with respiration. The presence of the O horizon represented a large source of seasonal variation in SR. The timing of oak phenology explained some of the large changes in both SR and LR, and their relationship with temperature and moisture. The contribution to SR of respiration from the mineral soil was greatest during pre-growth and pre-dormancy, as evident by the low LR:MSR ratios of 0.65 ± 0.10 (mean ± SE) and 0.69 ± 0.03, respectively, as compared to the other phenophases. Including moisture increased our ability to predict MSR and SR during the growth phenophase and LR for every phenophase. Temperature and moisture explained 85% of the variation in MSR, but only 60% of the variation in LR. The annual contribution of O horizon to SR was 48% and the ratio of litter to soil respiration was tightly coupled over a wide range of environmental conditions. Our results suggest the presence of the O horizon is a major mediator of SR.  相似文献   

9.
Nitrate uptake and respiration in roots and shoots: A model   总被引:5,自引:0,他引:5  
Respiration in plants is often divided into growth and maintenance components. From the growth respiration it is possible to estimate the efficiency of conversion of substrate to plant material. Analysis of recent experimental data on this basis suggests that the conversion efficiency is considerably lower in roots than in shoots, which conflicts with biochemical analysis. The conventional method for describing respiration data is developed to incorporate root activity and is applied to a set of experimental data. The model provides a means for estimating the respiratory cost of nitrate uptake and also a possible explanation for the inconsistency between experimental observations and theoretical analysis.  相似文献   

10.
A nitrogen-based model of maintenance respiration (Rm) would link Rm with nitrogen-based photosynthesis models and enable simpler estimation of dark respiration flux from forest canopies. To test whether an N-based model of Rm would apply generally to foliage of boreal and subalpine woody plants, I measured Rm (CO2 efflux at night from fully expanded foliage) for foliage of seven species of trees and shrubs in the northern boreal forest (near Thompson, Manitoba, Canada) and seven species in the subalpine montane forest (near Fraser, Colorado, USA). At 10°C, average Rm for boreal foliage ranged from 0.94 to 6.8μmol kg?1 s?1 (0.18–0.58 μmol m?2 s?1) and for subalpine foliage it ranged from 0.99 to 7.6 μmol kg?1 s?1 (0.28–0.64μmol m?2 s?1). CO2 efflux at 10°C for the samples was only weakly correlated with sample weight (r = 0.11) and leaf area (r = 0.58). However, CO2 efflux per unit foliage weight was highly correlated with foliage N concentration [r = 0.83, CO2 flux at 10°C (mol kg?1 s?1) = 2.62 × foliage N (mol kg?1)J, and slopes were statistically similar for the boreal and subalpine sites (P=0.28). CO2 efflux per unit of foliar N was 1.8 times that reported for a variety of crop and wildland species growing in warmer climates.  相似文献   

11.
Radial distribution patterns of Cd were determined in stems of the same oak trees (Quercus robur L.) in 1983 and again in 1994. On both sampling dates the same distribution patterns were generally observed. Highest concentrations of Cd were found at the sapwood-heart-wood transition. A sharp drop over this boundary towards inner parts of the stems occurred in all trees. In the decade between the two investigations the sapwood-heartwood boundaries had shifted outwards by 9–11 annual rings. The Cd peaks at the boundaries were shifted by approximately the same interval. The results suggest that the described Cd peaks are mobile in a radial direction. The present location of such peaks cannot be used to infer the pollution history of the tree's environment. The Cd accumulation at the sapwood-heartwood boundary is probably affected by physiological processes in the wood. Thus it is concluded that radial distributions of Cd in stems of oak trees are no reliable source of information for retrospective monitoring of past time pollution levels.  相似文献   

12.
Abstract

The root system architecture of young Greek fir (Abies cephalonica Loudon) trees was studied in Evritania, Central Greece. A sample of naturally regenerated fir plants were uprooted and divided into three age groups of 5 (5–6 years), 10 (9–11 years) and 15 (15–16 years) years old. Root architectural data (e.g. root length and volume, topology, branching structure) were obtained with a 3D digitizer (3SPACE Fastrak, Polhemus). In all nine trees the largest vertical root originating from the stump was selected, measured and coded as a taproot. The topological and geometrical information from the data file was analysed by computing the characteristics of each root segment. The AMAPmod software was used, providing the user with various tools for encoding, exploring and modelling plants. The findings showed that the age of fir trees is an important parameter that affects root architecture. Topological analysis revealed that the root system of Greek fir have almost a typical herringbone pattern during the first 10 years of tree life, and then the root systems changes to a less herringbone pattern. The root system is expanded with the tree age; however, the total root length and the total number of roots seems to increase in a linear trend, while the root volume appears to increase in a geometric way.  相似文献   

13.
P/2e ratios were calculated from anaerobic chemostat cultures of Paracoccus denitrificans with nitrogenous oxides as electron acceptor. P/2e ratios were calculated, using the Y ATP max values determined for aerobic cultures. When succinate was the carbon and energy source the average P/2e values of the sulphate-and succinate-limited cultures with nitrate as electron acceptor were 0.5 and 0.7, respectively, and of the nitrite-limited culture 0.9. With gluconate as carbon and energy source the average P/2e values of the gluconate-limited with nitrate as electron acceptor and nitrate limited cultures were 0.9 and 1.1, respectively.H+/O ratios measured in cells obtained from sulphate-, succinate, nitrite-, gluconate-and nitratelimited cultures yielded respective average values of 3.4, 4.5, 3.5, 4.8 and 6.2 for endogenous substrates. From our data we conclude that sulphate-and nitritelimitation causes the loss of site I phosphorylation. Nitrite has no influence on the maximum growth yield on ATP. We propose that metabolism in heterotrophically grown cells of Paracoccus dentrificans is regulated on the level of phosphorylation in the site I region of the electron transport chain.  相似文献   

14.
15.
These experiments test whether respiration can be predicted better from biomass or from potential respiration, a measurement of the mitochondrial and microsomal respiratory electron transport systems. For nearly a century Kleiber's law or a similar precursor have argued the importance of biomass in predicting respiration. In the last decade, a version of the Metabolic Theory of Ecology has elaborated on Kleiber's Law adding emphasis to the importance of biomass in predicting respiration. We argue that Kleiber's law works because biomass packages mitochondria and microsomal electron transport complexes. On a scale of five orders of magnitude we have shown previously that potential respiration predicts respiration as well as biomass in marine zooplankton. Here, using cultures of the branchiopod, Artemia salina and on a scale of less than 2 orders of magnitude, we investigated the power of biomass and potential respiration in predicting respiration. We measured biomass, respiration and potential respiration in Artemia grown in different ways and found that potential respiration (Ф) could predict respiration (R), both in µlO2 h1 (R = 0.924Φ + 0.062, r2 = 0.976), but biomass (as mg dry mass) could not (R = 27.02DM + 8.857, r2 = 0.128). Furthermore the R/Ф ratio appeared independent of age and differences in the food source.  相似文献   

16.
Question: Is a mosaic structure apparent in the spatial distribution of trees in old‐growth Abies amabilis forests? Location: Montane forests of the western Cascade Range, Washington, USA. Methods: Maps of tree locations were created for study areas located in two, 300‐year old stands and a single 600‐year old stand. Stand structure parameters were calculated using several subsample quadrats sizes (56.25 ‐ 306.25 m2), which were drawn randomly with replacement at a density of 250 quadrats per ha from the stem maps in the computing environment. Spatial cross‐covariance functions between different canopy strata were estimated using the spline cross‐correlogram. Results: Negative spatial correlation (segregation) between subcanopy tree density and areas of high overstorey occupancy was detected. Understorey and midstorey tree densities were positively spatially correlated. These general trends were apparent across the range of observational scales investigated. Significant spatial correlation between canopy strata was observed at spatial scales of 12 ‐ 44 m and extended to the largest scales in the 600‐year old stand. Conclusion: The observed spatial segregation between canopy strata supports the hypothesis that old A. amabilis forests form fine‐scale structural mosaics. Structural segregation at small scales may be due to competitive interactions as well as exogenous forcing of tree locations (e.g. by mortality due to pathogens or disturbance), however segregation at large scales in the 600‐year old stand is likely due to exogenous factors alone. This study reinforces the idea that horizontal heterogeneity is an emergent property of old‐growth forests.  相似文献   

17.
苏北淤泥质海岸典型防护林地土壤呼吸组分分离   总被引:5,自引:0,他引:5  
土壤呼吸组分分离研究在理解生态系统土壤CO2释放对气候变化的响应研究中具有重要的意义。采用挖壕沟法对苏北淤泥质海岸两种典型防护林地土壤呼吸组分进行了分离研究。结果表明:杨树和水杉林地的根呼吸、异养呼吸与土壤总呼吸的季节变化相似,6—9月份较高,其它月份较低。杨树(Populus tomentosa Carr.)和水杉(Metasequoia glyptostroboides HuCheng)林地根系呼吸的年通量分别为767.5gCO2m-2和902.8g CO2m-2,根呼吸对土壤总呼吸的贡献分别为20.2%和25.0%。杨树和水杉林地土壤异养呼吸对土壤总呼吸的贡献均远大于根呼吸,分别是根呼吸的3.9倍和3.0倍。温度是两林地土壤呼吸各组分的主要限制性因子,而土壤含水量不是土壤呼吸组分的限制性因子。本研究结果表明,苏北沿海防护林地的根呼吸对土壤总呼吸的贡献较小。为了能够更加准确的定量估算土壤呼吸各组分,在未来组分分离研究中应加强同位素法的应用。  相似文献   

18.
Abstract Two pea cultivars (Pisum sativum L., cvs. Alaska and Progress No. 9) shown previously to differ with regard to the appearance of the cyanide-resistant (alternative) pathway of respiration in axis tissue, were found to show this same difference in mature leaf tissue and in epicotyl mitochondria. The possible relationship between dwarf growth form and lack of alternative respiration in cv. Progress No. 9 was tested in two ways. When dwarfism was alleviated in Progress No. 9 by application of exogenous gibberellin A1, no appearance of the alternative pathway was observed. In a survey of eight other dwarf pea cultivars, five were found to have an alternative pathway comparable to that shown by the tall cv. Alaska, while three lacked the pathway (cf. Progress No. 9). In reciprocal crosses between Alaska and Progress No. 9, the alternative pathway capacity of F1 progeny resembled that of the maternal parent. This pattern was maintained in all the F2 generation, indicating maternal inheritance of the trait. These data suggest that alternative respiration in pea is, to some extent, under the control of an organellar genome.  相似文献   

19.
土壤-玉米系统中土壤呼吸强度及各组分贡献   总被引:16,自引:4,他引:16  
蔡艳  丁维新  蔡祖聪 《生态学报》2006,26(12):4273-4280
用特殊设计的气体采集箱法对玉米生长期间潮土呼吸强度进行了测定。结果表明,施用150kgNhm^-2的裸地土壤CO2累积排放量是294g C m^-2,约为种植玉米土壤的一半。用根去除法测得的玉米对土壤呼吸的贡献率,苗期小于20%,拔节到收获期波动在30%-70%之间,全生长期平均为46%。玉米生长期间因土壤有机碳分解而释放出的CO2总量为2.94MgChm^-2,大约是0—40cm土层中土壤有机碳总储存量的8%,因此需要输入7.35Mghm^-2的碳含量40%的作物残留物才能平衡土壤中有机碳的损失,约为玉米收获时残留于土壤中根量的一倍,但与残留根量及玉米生长期间根系分泌到土壤的有机物量的总和相当,因此土壤中有机碳总体处于平衡状态。在玉米生长期间,施用氮肥可使土壤CO2排放量降低10%。土壤排放CO2主要受土壤温度的影响,温度效应Q10为1.90-2.88。  相似文献   

20.
 Respiration of 1-year-old needles of 30-year-old Norway spruce trees [Picea abies (L.) Karst.] was studied in a nutrient optimisation experiment in northern Sweden. Respiration rates of detached needles, from ten control (C) and ten irrigated-fertilised (IL) trees, were measured on 16 occasions from June 1992 to June 1993. The aim of the study was to determine the influence of temperature on the seasonal course of needle maintenance respiration, and the effect of nitrogen concentration [N] and carbohydrate content on needle respiration in young Norway spruce trees subjected to long-term fertilisation. The IL treatment significantly affected needle size, in terms of dry mass and length, but not specific needle length (SNL). There was, however, a strong tree-specific effect on SNL (P<10–9, R 2 = 0.75). Needle starch content varied markedly with season (0–25% of total dry mass). This, unless accounted for, would cause erroneous estimates of nutrient concentrations, and of rates of needle respiration, within and between treatments. There was considerable seasonal variation in needle respiration, both in terms of maintenance respiration and temperature dependence (Q10). Q10 had its highest value (2.8) during winter and its lowest (2.0) in the middle of summer. In early autumn (August, September), respiration rate and needle [N] were significantly related (C: P = 0.001, IL: P<0.0005). There was no significant difference in the slope between the two regression lines, but a difference in intercept. At the same needle [N], needles from IL-plots always had a lower respiration rate than needles from control plots. No obvious explanation for the observed difference in intercept was found, but some plausible assumptions are put forward and discussed. Received: 24 January 1997 / Accepted: 1 July 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号