首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Development and repair of the vertebrate skeleton requires the precise coordination of bone-forming osteoblasts and bone-resorbing osteoclasts. In diseases such as osteoporosis, bone resorption dominates over bone formation, suggesting a failure to harmonize osteoclast and osteoblast function. Here, we show that mice expressing a constitutively nuclear NFATc1 variant (NFATc1(nuc)) in osteoblasts develop high bone mass. NFATc1(nuc) mice have massive osteoblast overgrowth, enhanced osteoblast proliferation, and coordinated changes in the expression of Wnt signaling components. In contrast, viable NFATc1-deficient mice have defects in skull bone formation in addition to impaired osteoclast development. NFATc1(nuc) mice have increased osteoclastogenesis despite normal levels of RANKL and OPG, indicating that an additional NFAT-regulated mechanism influences osteoclastogenesis in vivo. Calcineurin/NFATc signaling in osteoblasts controls the expression of chemoattractants that attract monocytic osteoclast precursors, thereby coupling bone formation and bone resorption. Our results indicate that NFATc1 regulates bone mass by functioning in both osteoblasts and osteoclasts.  相似文献   

2.
3.
4.
Pancreatic beta-cells in the islet of Langerhans produce the hormone insulin, which maintains blood glucose homeostasis. Perturbations in beta-cell function may lead to impairment of insulin production and secretion and the onset of diabetes mellitus. Several essential beta-cell factors have been identified that are required for normal beta-cell function, including six genes that when mutated give rise to inherited forms of diabetes known as Maturity Onset Diabetes of the Young (MODY). However, the intracellular signaling pathways that control expression of MODY and other factors continue to be revealed. Post-transplant diabetes mellitus in patients taking the calcineurin inhibitors tacrolimus (FK506) or cyclosporin A indicates that calcineurin and its substrate the Nuclear Factor of Activated T-cells (NFAT) may be required for beta-cell function. Here recent advances in our understanding of calcineurin and NFAT signaling in the beta-cell are reviewed. Novel therapeutic approaches for the treatment of diabetes are also discussed.  相似文献   

5.
6.
The bone remodelling process is closely related to bone health. Osteoblasts and osteoclasts participate in the bone remodelling process under the regulation of various factors inside and outside. Excessive activation of osteoclasts or lack of function of osteoblasts will cause occurrence and development of multiple bone‐related diseases. Ca2+/Calcineurin/NFAT signalling pathway regulates the growth and development of many types of cells, such as cardiomyocyte differentiation, angiogenesis, chondrogenesis, myogenesis, bone development and regeneration, etc. Some evidences indicate that this signalling pathway plays an extremely important role in bone formation and bone pathophysiologic changes. This review discusses the role of Ca2+/Calcineurin/NFAT signalling pathway in the process of osteogenic differentiation, as well as the influence of regulating each component in this signalling pathway on the differentiation and function of osteoblasts, whereby the relationship between Ca2+/Calcineurin/NFAT signalling pathway and osteoblastogenesis could be deeper understood.  相似文献   

7.
心肌肥大是心肌细胞面对多种病理刺激时的共同反应,以心肌细胞体积增大和胚胎期基因的重新表达为标志.心肌发育调控基因肌肉LIM蛋白(muscle LIM protein,MLP)的表达异常与心肌肥大有关.为研究MLP参与心肌肥大发生的分子机制,采用去氧肾上腺素(phenylephrine, PE)刺激大鼠原代培养心肌细胞,建立心肌细胞肥大模型,采用RNAi技术敲减MLP的表达,分析MLP与肥大信号通路钙调神经磷酸酶(calcineurin)/活化T细胞核因子(nuclear factor of activated T-cells, NFAT)的关系.结果显示, 原代培养的心肌细胞经一定浓度的PE刺激后细胞表面积增加,肥大标志蛋白ANP、BNP表达增高,并伴有MLP表达上调. RNAi方法敲减MLP的表达则明显抑制PE诱导的心肌细胞表面积增加和BNP表达增高,并且直接 影响NFAT的转录激活活性,提示MLP与心肌肥大的发生密切相关,并且可能是通过calcineurin/NFAT信号通路而参与心肌肥大的发生.  相似文献   

8.
9.
Cutaneous wound healing requires keratinocyte proliferation, migration and differentiation to restore the barrier function of the skin. The calcineurin/nuclear factor of activated-T-cell (NFAT) signaling pathway has been recently shown to be involved in keratinocyte growth, differentiation and migration. It is induced by an increased intracellular calcium rate and its inhibition results in decreased capacities of keratinocytes to migrate. Nevertheless, the link between calcineurin activation and keratinocyte migration remains unknown. Recently, Orai1, a pore subunit of a store-operated calcium channel that favors calcium influx, was shown to play a critical role to control proliferation and migration of basal keratinocytes. Of interest, the actin-bundling T-plastin is crucial in cell motility through cross-linking to actin filament and its synthesis was shown to be induced by calcium influx and regulated by the calcineurin/NFAT pathway in tumor Sezary cells. We investigated herein the role of the calcineurin/NFAT pathway-dependent T-plastin in keratinocyte migration, by quantifying T-plastin expression in keratinocytes and by analyzing their migration under calcineurin inhibition or knockdown of NFAT2 or T-plastin. We did confirm the role of the calcineurin/NFAT pathway in keratinocyte migration as shown by their decreased capacities to migrate after FK506 treatment or siNFAT2 transfection in both scratching and Boyden assays. The expression of NFAT2 and T-plastin in keratinocytes was decreased under FK506 treatment, suggesting that T-plastin plays a role in keratinocyte migration downstream to the calcineurin/NFAT pathway. Accordingly, siRNA knockdown of T-plastin expression also decreased their migration capacities. Actin lamellipodia formation as well as FAK and β6-integrin expression were also significantly decreased after treatment with FK506 or siRNA, reinforcing that NFAT2-dependent T-plastin expression plays a role in keratinocyte migration. These results indicate that T-plastin might be considered as a major actor in the mechanisms underlying calcineurin/NFAT-dependent keratinocyte migration and may explain wound-healing defects observed in patients under calcineurin inhibitor long-term treatment.  相似文献   

10.
11.
Calcineurin   总被引:23,自引:0,他引:23  
  相似文献   

12.
Calcineurin     
Hogan PG  Li H 《Current biology : CB》2005,15(12):R442-R443
  相似文献   

13.
14.
The formation of cartilage elements in the developing vertebrate limb, where they serve as primordia for the appendicular skeleton, is preceded by the appearance of discrete cellular condensations. Control of the size and spacing of these condensations is a key aspect of skeletal pattern formation. Limb bud cell cultures grown in the absence of ectoderm formed continuous sheet-like masses of cartilage. With the inclusion of ectoderm, these cultures produced one or more cartilage nodules surrounded by zones of noncartilaginous mesenchyme. Ectodermal fibroblast growth factors (FGF2 and FGF8), but not a mesodermal FGF (FGF7), substituted for ectoderm in inhibiting chondrogenic gene expression, with some combinations of the two ectodermal factors leading to well-spaced cartilage nodules of relatively uniform size. Treatment of cultures with SU5402, an inhibitor FGF receptor tyrosine kinase activity, rendered FGFs ineffective in inducing perinodular inhibition. Inhibition of production of FGF receptor 2 (FGFR2) by transfection of wing and leg cell cultures with antisense oligodeoxynucleotides blocked appearance of ectoderm- or FGF-induced zones of perinodular inhibition of chondrogenesis and, when introduced into the limb buds of developing embryos, led to shorter, thicker, and fused cartilage elements. Because FGFR2 is expressed mainly at sites of precartilage condensation during limb development in vivo and in vitro, these results suggest that activation of FGFR2 by FGFs during development elicits a lateral inhibitor of chondrogenesis that limits the expansion of developing skeletal elements.  相似文献   

15.
16.
17.
It is well established that the spinal cord of embryonic vertebrates induces sclerotomal somitic mesoderm to chondrify. We have investigated whether the spinal cord retains this inductive ability for the duration of the life of the avian embryo. Somites were isolated from embryos of H.H. stages 16 to 18 and either cultured alone in a medium which would not allow spontaneous chondrogenesis or cultured in direct contact with the spinal cord from embryos ranging in age between H.H. stages 33 and 44 (7 1/2--18 days of incubation). Somites cultured alone did not chondrify. Somites cultured in contact with either the ventral surface of the spinal cord or with the ependyma of the spinal cord chondrified in virtually 100% of all cultures--irrespective of the age of the donor embryo providing the spinal cord. The somites which were cultured in contact with the dorsal surface of the spinal cord did not undergo chondrogenesis. We conclude that the ventral spinal cord and the ependyma retain inductive ability through embryonic life and discuss the possible reasons for this.  相似文献   

18.
Nuclear factor of activated T cell (NFAT) proteins are key regulators involved in multiple physiological mechanisms, such as immune response and cell growth. The capacity of selective calcineurin/NFAT inhibitors to decrease NFAT-dependent cancer cell progression, particularly in breast cancer, has already been demonstrated. In this study, we report a role for the human herpesvirus 6B (HHV-6B) U54 tegument protein in inhibiting MCF-7 breast cancer cell proliferation by inhibiting NFAT activation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号