首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When delipidated Mr>10,000 cut-off human fetal lung cytosol was separated on gel filtration and ion-exchange chromatography on Auto-FPLC system, two fatty acid-binding proteins (FABPs) of pI 6.9 and pI 5.4 were purified to homogeneity. On Western blotting analysis with the anti-human fetal lung pI 6.9 FABP, these two proteins showed immunochemical cross reactivity with each other and with purified hepatic FABPs but not with cardiac or gut FABP. These two FABPs have identical molecular mass of 15.2 kDa, which is slightly higher than that of the hepatic proteins (14.2 kDa). Carbohydrate covalently linked to FABPs, that may substantially add to the molecular mass, was not detected in the purified protein preparations. Amino acid analysis revealed that both the proteins have same amino acid composition each containing one Trp residue that is lacking in hepatic FABP. Different isoforms of lung FABP exhibited different binding ability for their natural ligands. These proteins bind palmitoyl CoA with higher affinity than oleic acid. pI 6.9 FABP can more rapidly and efficiently transfer fatty acid than can pI 5.4 FABP from unilammelar liposomes. Thus these FABPs may play a critical role in fatty acid transport during human fetal lung development.Abbreviations AO anthroyloxy - 12-AS 12-(9-anthroyloxy)stearic acid - FABP fatty acid-binding protein - NBD-PE [N-(4-nitrobenzo-2-oxa-1,3-diazole)phosphatidylethanolamine - Pal-CoA palmitoyl coenzyme A - PITC phenylisothiocyanate - PBS phosphate-buffered saline - PtdCho phosphatidylcholine - SUV small unilamellar vesicle - Tris tris(hydroxymethyl) amino methane  相似文献   

2.
3.
Two fatty acid binding proteins (FABPs) of identicalM r, 13 kDa, have been isolated from developing human fetal brain. A delipidated 105,000 g supernatant was incubated with [1 -14C]oleate and subjected to a Sephacryl S-200 column followed by gel filtration chromatography on a Sephadex G-75 column and ion-exchange chromatography using a DEAE-Sephacel column. Purity was checked by UV spectroscopy, SDS-PAGE, isoelectric focusing and immunological cross-reactivity. The two FABPs designated as DE-I (pI 5.4) and DE-II (pI 6.9) showed cross-reactivity with each other and no alteration at the antigenic site during intrauterine development. Anti-human fetal brain FABP does not cross-react with purified human fetal heart, gut, lung or liver FABPs. The molecular mass of DE-I and DE-II is lower than those of fetal lung and liver FABPs. Like liver FABP, these proteins bind organic anions, fatty acids and acyl CoAs but differ in their binding affinities. Both DE-I and DE-II have been found to exhibit higher affinity for oleate (K d = 0.23 μM) than palmitate (K d = 0.9μM) or palmitoyl-CoA (K d = 0.96 μM), with DE-I binding less fatty acids than DE-II. DE-II is more efficient in transferring fatty acid from phospholipid vesjcles than DE-I indicating that human fetal brain FABPs may play a significant role in fatty acid transport in developing fetal brain.  相似文献   

4.
Maternal and fetal plasma concentrations of free fatty acids, triacylglycerols and phospholipids and the profile of their fatty acids were measured in three catheterized and unanaesthetized sheep. Fetal concentrations of all three lipid fractions were low and did not correlate with maternal concentrations. There were no measurable umbilical venous-arterial differences. Linoleic acid concentrations were low in both mother and fetus. The fatty acid composition of fetal adipose tissue, liver, lung and cerebellum of five animals was analysed. Again linoleic acid levels were very low, but phospholipids contained 2-8% arachidonic acid. [14C] linoleic acid and [3H] palmitic acid were infused intravenously into three ewes. Only trace amounts of labelled fatty acids were found in fetal plasma and these were confined to the free fatty acids. 14C-label was incorporated into fetal tissue lipids, but most of this probably was due to fetal lipid synthesis from [14C] acetate or other water-soluble products of maternal [14C] linoleic acid catabolism. It is concluded that only trace amounts of fatty acids cross the sheep placenta. They are derived mainly from the maternal plasma free fatty acids and might just be sufficient to be the source of the small amounts of essential fatty acids found in the lamb fetus, but are insignificant in terms of energy supply or lipid storage.  相似文献   

5.
Alpha-fetoprotein and fetal serum albumin have been simultaneously purified from fetal bovine serum by mild procedures utilizing ammonium sulfate, hydrophobic interaction, immobilized metal (nickel) affinity chromatography, and isoelectric focusing. The lipidic extract from each protein was analyzed by gas chromatography and the peak appearing just after the arachidonic acid was identified as squalene by gas chromatography-mass spectrometry. This isoprenoid was not detected formerly in these proteins from human, rat, bovine, and pig. Until recently, in the analysis of the fatty acid composition of the alpha-fetoprotein and serum albumin from mammals, a peak has been assigned in the last part of the chromatographic profile, after arachidonic acid, to docosahexaenoic acid. In the present work, it was found that the peak corresponds to squalene instead of docosahexaenoic acid. Furthermore, we conclude that bovine alpha-fetoprotein and fetal serum albumin carry squalene, but not docosahexaenoic acid. These results agree with others obtained analyzing the same proteins from chick embryo.  相似文献   

6.
Maternal nutrition, especially LCPUFA, is an important factor in determining fetal growth and development. Our earlier cross sectional study reports lower docosahexanoic acid (DHA) levels at the time of delivery in mothers delivering low birth weight (LBW) babies. This study was undertaken to examine the role of the maternal omega-3 and omega-6 fatty acid profile across the gestation in fetal growth. This is a hospital based study where women were recruited in early gestation. Maternal blood was collected at 3 time points, i.e., T1 = 16th–20th week, T2 = 26th–30th week and T3 = at delivery. Cord blood was collected at delivery. At delivery, these women were divided into 2 groups: those delivering at term a baby weighing >2.5kg [Normal birth weight (NBW) group] and those delivering at term a baby weighing <2.5kg [LBW group]. The study reports data on 111 women recruited at T1, out of which 60 women delivered an NBW baby at term and 51 women delivered an LBW baby at term. Fatty acids were analysed using gas chromatography. At T1 of gestation, maternal erythrocyte DHA levels were positively (p<0.05) associated with baby weight. Maternal plasma and erythrocyte arachidonic acid and total erythrocyte omega-6 fatty acid levels at T2 were higher (p<0.05 for both) in the LBW group. Total erythrocyte omega-3 fatty acid levels were lower (p<0.05) while total erythrocyte omega-6 fatty acid levels were higher (p<0.05) in the LBW group at delivery. Our data demonstrates the possible role of LCPUFA in the etiology of LBW babies right from early pregnancy.  相似文献   

7.
Fatty acid binding proteins (FABPs) may play an important role in the transport and metabolism of fatty acids during human embryogenesis. Three fractions of FABP, namely, DE-I, DE-II and DE-III, having Mr 14,200 Da each and pI values 7.8, 6.9 and 5.4, respectively, have been detected in human fetal liver. These proteins were purified by heat and butanol precipitation of fetal liver supernatant as well as by gel filtration and ion-exchange chromatography. Fetal liver FABPs are immunochemically identical to each other. Concentrations of DE-I, DE-II and DE-III increase gradually from early gestation to term. DE-I is almost lipid-free, DE-II binds long-chain fatty acids nonspecifically and DE-III transports mainly arachidonic acid. DE-II and DE-III protect glucose-6-phosphate dehydrogenase, which furnishes NADPH for fatty acid synthesis, from the feed-back inhibition exerted by added palmitoyl-CoA and oleate. In the absence of exogenous inhibitors, this enzyme is stimulated by FABPs. DE-I has no effect on such inhibition. Thus, FABPs play a regulatory role in critical aspects of cellular physiology during human embryogenesis.  相似文献   

8.
A positive correlation has been shown between dietary intake of long-chain omega-3 fatty acids in late pregnancy and gestation length in pregnant women and experimental animals. To determine whether omega-3 fatty acids have an effect on preterm labor in sheep, a fish oil concentrate emulsion was continuously infused to six pregnant ewes from 124 days gestational age. At 125 days, betamethasone was administered to the fetus to produce preterm labor. Both the onset of labor and the time of delivery were delayed by the fish oil emulsion. Two of the omega-3-infused ewes reverted from contractions to nonlabor, an effect never previously observed for experimental glucocorticoid-induced preterm labor in sheep. Maternal plasma estradiol and maternal and fetal prostaglandin E2 rose in control ewes but not in those infused with omega-3 fatty acid. The ability of omega-3 fatty acids to delay premature delivery in sheep indicates their possible use as tocolytics in humans. Premature labor is the major cause of neonatal death and long-term disability, and these studies present information that may lead to a novel therapeutic regimen for the prevention of preterm delivery in human pregnancy.  相似文献   

9.
Levels of fatty acid binding proteins (FABPs), lipids as well as activities of fatty acid synthesizing enzymes such as fatty acid synthase and ATP-citrate lyase increase with gestation showing maximum at term in human fetal lung. However, the activity of ATP-citrate lyase showed the same trend up to 30 weeks of gestation before declining slightly at term. These results indicate the importance of supply and/or synthesis of fatty acids when lung surfactant synthesis begins; thereby showing a correlation between the FABPs, lipid pattern and the activities of fatty acid synthesizing enzymes during prenatal lung development.  相似文献   

10.
Fatty acids bound to alpha-fetoprotein and albumin during rat development   总被引:1,自引:0,他引:1  
The time-course levels and composition of the fatty acids bound to rat alpha-fetoprotein (AFP) and albumin from several sources, were determined throughout development, and related to the intake of lipids from milk and the compositional changes in brain and liver fatty acids. The major fatty acids bound to AFP were acids bound to AFP were polyunsaturated and mainly docosahexaenoic acid (22:6(n-3], either from fetal serum (23.1%) or whole fetuses (21.6%), whereas palmitic (34.1%) and oleic (29.9%) acids were the main acids bound to albumin from the same sources. Amniotic fluid AFP contained less fatty acids (0.8 mol/mol protein) than that of fetal serum (1.4 mol/mol protein), and especially noticeable was a reduced amount of 22:6 (9.6%). Both AFP-concanavalin A microforms showed identical fatty acid composition. Levels of 22:6 bound to AFP decreased quickly after birth until a minimum at 8-10 days, increasing moderately thereafter. This minimum is coincident in time with a maximal accumulation of this fatty acid by brain and a loss of 22:6 by liver. Except for colostrum, levels of 22:6 in milk lipids were low and fairly constant, but always greater than those of its precursor, linolenic acid (18:3 (n-3]. These results support a specialized role of AFP in the plasma transport and tissue delivery of polyunsaturated fatty acids, and mainly docosahexaenoic acid.  相似文献   

11.
Recently, covalently bound fatty acids have been identified on a variety of proteins. Many of these acyl proteins are physiologically important, and the lipid modification often appears to be essential for their function. In this investigation mature erythrocytes have been used to study in detail the metabolic behavior of protein-bound fatty acids. Although deficient in protein synthesis, these cells are still able to covalently attach [3H]palmitic acid to proteins located at the plasma membrane and its associated cytoskeleton. Linkage analyses demonstrated that the labeled polypeptides contained ester- or thioester-bound fatty acids. The covalent binding of fatty acid was rapidly reversible. Half-lives of the protein-bound fatty acid molecules ranged from less than 30 min to more than 3 h. The deacylation reaction was not due to a chemically labile linkage of protein and fatty acid but appeared to be physiologically induced. Differences in the fatty acid turnover rates between the acyl proteins suggested an independent regulation of their lipid turnover. A number of proteins underwent dynamic fatty acid acylation, indicating that palmitylated proteins undergoing fatty acid turnover are not a rare exception.  相似文献   

12.
De novo fatty acid synthesis in developing rat lung   总被引:1,自引:0,他引:1  
The rate of de novo fatty acid synthesis in developing rat lung was measured by the rate of incorporation of 3H from 3H2O into fatty acids in lung slices and by the activity of acetyl-CoA carboxylase in fetal, neonatal and adult lung. Both tritium incorporation and acetyl-CoA carboxylase activity increased sharply during late gestation, peaked on the last fetal day, and declined by 50% 1 day after birth. In the adult, values were only one-half the peak fetal rates. In vitro regulation of acetyl-CoA carboxylase activity in fetal lung was similar to that described in adult non-pulmonary tissues: activation by citrate and inhibition by palmitoyl-CoA. Similarly, incubation conditions that favored enzyme phosphorylation inhibited acetyl-CoA carboxylase activity in lung while dephosphorylating conditions stimulated activity. Incorporation of [U-14 C]glucose into lung lipids during development was influenced heavily by incorporation into fatty acids, which generally paralleled the rate of tritium incorporation into fatty acids. The relative utilization of acetyl units from exogenous glucose for overall fatty acid synthesis was greater in adult lung than in fetal or neonatal lung, suggesting that other substrates may be important for fatty acid synthesis in developing lung. In fetal lung explants, de novo fatty acid synthesis was inhibited by exogenous palmitate. Taken together, these data suggest that de novo synthesis may be an important source of saturated fatty acids in fetal lung but of lesser importance in the neonatal period. Furthermore, the regulation of acetyl-CoA carboxylase activity and fatty acid synthesis in lung may be similar to non-pulmonary tissues.  相似文献   

13.
Ceramides, sphingosine, sphinganine, as well as Zn (++)-dependent and Zn (++)-independent acid sphingomyelinase are present in the plasma of adults. The aim of the present study was to examine the concentrations of these compounds and activities of both enzymes in the umbilical cord blood in humans. Twenty-two women with uncomplicated term pregnancy volunteered for the study. Blood was taken from the umbilical cord artery and from the antecubital vein of the mother immediately after delivery. Free ceramides were isolated by thin layer chromatography, and their fatty acids were identified and quantified by gas-liquid chromatography. Free sphingosine and sphinganine concentrations were determined using high-performance liquid chromatography. Acid Zn (++)-dependent and Zn (++)-independent sphingomyelinase activity was measured using sphingomyelin [choline-methyl-14C] as a substrate. We found that the compounds examined are present in the umbilical cord blood. The total fatty acid-containing ceramide concentrations in fetal blood were lower than in mother's blood. The mean sphingosine and sphinganine concentrations in the fetal and maternal serum were similar. The examined enzymes were present in the fetal serum, and their mean activity did not differ from that in the mother. In conclusion, we have shown the presence of ceramides, sphingosine and sphinganine and both isoforms of acid sphingomyelinase in the human fetal cord blood. They are most likely the product of the fetus itself.  相似文献   

14.
De novo fatty acid synthesis in lung is significant during fetal growth and development. Specific activity and relative rate of synthesis of fatty acid synthetase increase with the days of gestational age and drop significantly after birth. Fetal lungs contain thyroid hormone receptors and binding capacities of this hormone to the fetal lungs also increase with the days of gestational age. Our results suggest that de novo fatty acid synthesis in fetal lungs may make a significant contribution towards surfactant synthesis.  相似文献   

15.
The effects of ischemia on in vivo fatty acid metabolism in fetal lung were studied using rabbit fetuses of 25 to 28 gestational age. Ischemia was produced by inflating the aortic balloon thereby reducing the uterine blood flow. Ischemic insult resulted significant increase in lactate/pyruvate and NADH/NAD ratios and decrease in ATP/ADP ratio in fetal lung. Levels of CoA, acetyl CoA, carnitine and acetyl carnitine decreased while those of long chain acyl CoA and long chain acyl carnitine enhanced. Tissue content of these metabolites returned to normal after 2 hr stabilization following 20 min of ischemic insult. Ischemia also caused small increase in lipogenesis and neutral lipid content of fetal lungs. Our results thus suggest that β-oxidation in fetal lung is inhibited and becomes rate-limiting for fatty acid oxidation during ischemia.Sudden occurrence of hypoxia or ischemia in the fetus is a typical challenge for the obstetricians. The patients occasionally suffer from neurological injury following cerebral hypoxemia. The hypoxic insult may also affect the respiratory activity significantly. For example, acute alveolar hypoxia causes pulmonary vasoconstriction by damaging pulmonary vascular smooth muscle (1) and results in reduction of fatty acid oxidation by limiting the ATP supply required for metabolic processes (2). Hypoxia has also been shown to decrease the rate of palmitate incorporation into phospholipids (3), inhibit rate of fatty acid synthesis (3) and depress rate of incorporation of fatty acid and phosphatidic acid into lipids (4). Despite the fact that fatty acids represent a major substrate for energy metabolism in lung, no work has been done on the fatty acid metabolism in fetal lung. The present study was designed to determine the fate of fatty acid oxidation in fetal lung during ischemic challenge. The levels of acyl CoA and acylcarnitine intermediates were also measured in order to determine the rate-controlling steps of fatty acid metabolism in the fetal lung.  相似文献   

16.
A wide range of proteins of cellular and viral origin have been shown to be modified covalently by long-chain fatty acids. Recent studies have revealed at least two distinct types of protein fatty acylation which involve different fatty acyltransferases. The abundant fatty acid, palmitate, is incorporated post-translationally through a thiol ester linkage into a variety of cell surface glycoproteins and non-glycosylated intracellular proteins. In contrast, the rare fatty acid, myristate, is incorporated co-translationally through an amide linkage into numerous intracellular proteins. Identification of proteins that contain covalent fatty acids has revealed that this modification is common to a broad array of proteins that play important roles in transmembrane regulatory pathways. For many of these proteins, the fatty acid moiety appears to play an important role in directing the polypeptide to the appropriate membrane and in mediating protein-protein interactions within the membrane. This review will summarize recent studies that define different pathways for protein fatty acylation and will consider the potential functions for this unique covalent modification of proteins.  相似文献   

17.
Binding, spectral and immunological studies were performed to demonstrate the conformational changes in rodent and human alpha-fetoprotein (AFP) induced by a free fatty acid environment. Scatchard analysis of estradiol (E2) binding to purified rat AFP indicated that unsaturated fatty acids changed the number of binding E2 sites and the apparent E2 equilibrium dissociation constant which varied non-linearly with docosahexaenoic acid concentration. UV spectral analysis of rodent and human AFPs showed that the absorbance minimum of AFP incubated with unsaturated fatty acid (L-AFP) was red-shifted, broadened and less pronounced than that of purified native AFP (N-AFP). Immunochemical studies with specific polyclonal antibodies to purified rodent and human AFPs (N-AFP antibodies) showed that these proteins lost immunoreactivity after incubation with unsaturated fatty acid. N-AFP antibodies recognized fewer epitopes on L-AFP than on N-AFP, whatever the species. Specific anti-rat L-AFP antibodies were used to demonstrate specific epitopes on rat L-AFP. Rat L-AFP antibodies did not recognize rat N-AFP. Saturated fatty acids were without effect on the binding, spectral and immunological properties of rodent and human AFPs. RIA or ELISA values for human AFP from fetal serum, hepatoma serum, and cord serum, were reduced 80, 50 and 5%, respectively, by unsaturated fatty acids. This decrease correlated with the relative percentage of polyunsaturated fatty acid in each biological fluid. Such results indicate that an unsaturated fatty acid environment induces conformational changes in AFP which may modulate the endocrine and immune functions of this protein.  相似文献   

18.
The search for effective drug delivery systems is one of the major challenges in drug formulation especially for biopharmaceuticals such as proteins, and peptide-based drugs and vaccines. A procedure has been developed whereby human serum albumin (HSA) can be used as a delivery vehicle for these biomolecules using its role as main fatty acid carrier. Using essentially fatty acid free HSA (HSAff) it is possible to form stable complexes with lipidic chain compounds (lipo-compounds). Two lipo-compounds have been used to develop this system, a novel antimicrobial lipopeptide and γ-amino-n-butyric acid, GABA, conjugated with an alkyl chain, lipo-GABA, in both cases C8 and C14 alkyl chain lengths were evaluated. The HAS–lipo compound complex had a mutual stabilizing effect on both the HSA and the lipo-compound. The protease enzyme study showed that the alkyl chains of these lipo-compounds bound to HSAff confer a similar if not greater biostability than caprylic acid shown by CD and importantly, the bound lipopeptide was stabilized by the HSA shown by mass spectrometry. Heat stability studies at 60°C over 10 h also confirmed that the lipo-HSA complexes confer stability and provide a method of preparing sterile formulation for therapeutic use. No further increased in stability of the lipo-compounds when HSA containing fatty acid (HSAfa) was used. With the antimicrobial lipopeptide, there was enhanced activity with HSAff formulation suggesting increased biostability and bioavailability of compounds. These finding allowed us to develop a simple and effective way of delivering lipo-compounds using fatty acid free HSA as the carrier.Australian Peptide Conference Issue.  相似文献   

19.
The relationship between fatty acid binding proteins, ATP citrate lyase activity and fatty acid synthesis in developing human placenta has been studied. Fatty acid binding proteins reverse the inhibitory efect of palmitoyl-CoA and oleate on ATP citrate lyase and fatty acid synthesis. In the absence of these inhibitors fatty acid binding proteins activate ATP citrate lyase and stimulate [ 1-14 C] acetate incorporation into placental fatty acids indicating binding of endogenous inhibitors by these proteins. Thus these proteins regulate the supply of acetyl-CoA as well as the synthesis of fatty acids from that substrates. As gestation proceeds and more lipids are required by the developing placenta fatty acid binding protein content, activity of ATP citrate lyase and rate of fatty acid synthesis increase indicating a cause and efect relationship between the demand of lipids and supply of precursor fatty acids during human placental development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号