首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
Abstract: We investigated the modulation of (±)-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-induced increases in intracellular free Ca2+ ([Ca2+]i) and intracellular free Mg2+ ([Mg2+]i) by cyclothiazide and GYKI 52466 using microspectrofluorimetry in single cultured rat brain neurons. AMPA-induced changes in [Ca2+]i were increased by 0.3–100 µ M cyclothiazide, with an EC50 value of 2.40 µ M and a maximum potentiation of 428% of control values. [Ca2+]i responses to glutamate in the presence of N -methyl- d -aspartate (NMDA) receptor antagonists were also potentiated by 10 µ M cyclothiazide. The response to NMDA was not affected, demonstrating specificity of cyclothiazide for non-NMDA receptors. Almost all neurons responded with an increase in [Ca2+]i to both kainate and AMPA in the absence of extracellular Na+, and these Na+-free responses were also potentiated by cyclothiazide. GYKI 52466 inhibited responses to AMPA with an IC50 value of 12.0 µ M . Ten micromolar cyclothiazide significantly decreased the potency of GYKI 52466. However, the magnitude of this decrease in potency was not consistent with a competitive interaction between the two ligands. Cyclothiazide also potentiated AMPA- and glutamate-induced increases in [Mg2+]i. These results are consistent with the ability of cyclothiazide to decrease desensitization of non-NMDA glutamate receptors and may provide the basis for the increase in non-NMDA receptor-mediated excitotoxicity produced by cyclothiazide.  相似文献   

2.
Sequential 31P and 1H nuclear magnetic resonance spectra were measured for neonatal piglets (n = 7) to determine the relationship between brain intracellular pH (pHi), lactate, and phosphorylated energy metabolites during partial ischemia. Simultaneous determinations of arterial and cerebral venous blood gases, pH, O2 content, and plasma concentrations of glucose and lactate were also made. Ischemia, induced by bilateral carotid artery ligation plus hemorrhagic hypotension for 35 min, resulted in variable reductions in ATP, phosphocreatine, and increases in Pi, H+, and lactate relative to control levels. In four piglets, whose arterial blood glucose rose above control, brain lactate exceeded 20 mumol g-1 with corresponding decreases in pHi of greater than 0.7 units compared to control levels. The extents of brain acidosis and lactosis showed a strong linear correlation with each other (r = 0.94). Maximal changes in brain lactate, pHi, and ATP at the end of ischemia showed significant positive linear correlations with the control levels of arterial blood glucose, but did not correlate with arterial glucose or arterial cerebral-venous glucose difference values during ischemia. The relationship between pHi and buffer base deficit was comparable to results reported for adult animals up to 20 mumol ml-1. However, in contrast to models proposed for adult brain, the continued linear relationship between pH and higher buffer base levels is most consistent with a theoretical model that assumes the presence of weak acid buffers with pKa values from 6.7 to 5.2.  相似文献   

3.
Many biochemical effects of local anesthetics are expressed in Ca2+-dependent processes [Volpi M., Sha'afi R.I., Epstein P.M., Andrenyak P.M., and Feinstein M.B. (1981) Proc. Natl. Acad. Sci. USA 78, 795-799]. In this communication we report that local anesthetics (dibucaine, tetracaine, lidocaine, and procaine and the analogue quinacrine) inhibit the Ca2+-dependent and the Mg2+-dependent ATPase activity of rat brain synaptosomes and of membrane vesicles derived from them by osmotic shock. This inhibition is induced by concentrations of these drugs close to their pharmacological doses, and a good correlation between K0.5 of inhibition and their relative anesthetic potency is found. The Ca2+-dependent ATPase is more selectively inhibited at lower drug concentrations. The physiological relevance of these findings is discussed briefly.  相似文献   

4.
31P-nuclear magnetic resonance spectra of superfused cerebral tissues were obtained under normal, hypoglycaemic, and hypoxic conditions. Concentrations of free intracellular magnesium were calculated from differences in chemical shifts between the alpha- and beta-resonances of the nucleoside phosphates. Control levels of 0.33 mM were significantly increased to 0.52 mM in hypoglycaemia and to 0.57 mM in severe hypoxia. Removal of calcium from the superfusing medium increased the free intracellular Mg2+ concentration to 0.63 mM.  相似文献   

5.
Abstract: Synaptosomes can be loaded with mag-fura-2 without significant perturbation of their ATP content by incubation for 10 min at 37°C with 10 µM mag-fura-2 acetoxymethyl ester in Hanks'-HEPES buffer (pH 7.45). The intrasynaptosomal free Mg2+ concentration ([Mg2+]i) was found to be dependent on external Mg2+ concentration, increasing from 0.8 to 1.25 mM when the concentration of Mg2+ in the incubation medium increased from 1 to 8 mM. Dissipation of the Na+ gradient across the plasma membrane of synaptosomes by treatment with the Na+ ionophore monensin (0.2 mM) or with veratridine (0.2 mM) and ouabain (0.6 mM) produced a moderate increase of [Mg2+]i, from 1.0 to 1.2–1.3 mM in an incubation medium containing 5 mM Mg2+. Plasma membrane depolarization by incubation of synaptosomes in a medium containing 68 mM KCl and 68 mM NaCl had no effect on [Mg2+]i. Reversal of the Na+ gradient by incubation of synaptosomes in a medium in which external Na+ was replaced by choline increased [Mg2+]i up to 1.6 and 2.2 mM for extrasynaptosomal Mg2+ concentrations of 1 and 8 mM, respectively. We conclude that a Na+/Mg2+ exchange operates in the plasma membrane of synaptosomes. In the presence of Mg2+ in the incubation medium, extrasynaptosomal ATP, but not ADP or adenosine, increased [Mg2+]i from 1.1 ± 0.1 up to 1.6 ± 0.1 mM. The nonhydrolyzable ATP analogue adenosine 5′-(βγ-imido)triphosphate antagonized the effect of ATP, but had no effect by itself on [Mg2+]i. It is concluded that Mg2+ transport across the plasma membrane of synaptosomes is modulated by the activity of an ecto-ATPase or an ecto-protein kinase.  相似文献   

6.
Brain metabolism and intracellular pH were studied during and after episodes of ischaemia and hypoxia-ischaemia in lambs anaesthetised with sodium pentobarbitone. 31P and 1H magnetic resonance spectroscopy methods were used to monitor brain pHi and brain concentrations of Pi, phosphocreatine (PCr), beta--nucleoside triphosphate (beta NTP), and lactate. Simultaneous measurements were made of cerebral blood flow and cerebral oxygen and glucose consumption. Cerebral ischaemia sufficient to reduce oxygen delivery to 75% of control values was associated with a fall in brain pHi and increase in brain Pi. Progressively severe hypoxia-ischaemia was associated with a progressive fall in brain pHi, PCr, and beta NTP and increase in brain Pi. In two animals the increase in brain lactate during hypoxia-ischaemia measured by 1H nuclear magnetic resonance (NMR) could be quantitatively accounted for by the increased net uptake of glucose by the brain in relation to oxygen, but was insufficient to account for the concomitant acidosis according to previous estimates of brain buffering capacity. In four animals brain pHi, PCr, Pi, and beta NTP had returned to normal 1 h after the hypoxic-ischaemic episode. In one animal brain pHi had reverted to normal at a time when 1H NMR indicated persistent elevation of brain lactate.  相似文献   

7.
The effect of a single administration of morphine sulfate (15 mg/kg, s.c. or 30 mg/kg, i.p., 30 min) on Ca2+-stimulated Mg2+-dependent ATPase activity was investigated in synaptosomal plasma membranes (SPM) prepared from rat cortex. Morphine produced a significant decrease in Ca2+,Mg2+-ATPase activity in synaptosomal fractions (SPM 1 + 2) known to contain a high density of opiate receptors and calmodulin-dependent Ca2+,Mg2+-ATPase. However, in another subpopulation (SPM 3) that contains fewer opiate receptors and less enzyme activity, no such decrease in the enzyme activity was observed after the opiate administration. The decrease in Ca2+,Mg2+-ATPase activity seen in SPM 1 + 2 was specifically antagonized by the opiate antagonist naloxone hydrochloride (2 mg/kg, s.c.) when given 15 min before morphine administration. Mg2+-ATPase was not altered either by morphine or by a naloxone-morphine combination. These findings give further evidence for the role of intracellular Ca2+ in mediating many of the acute effects of opiates.  相似文献   

8.
High-resolution 1H NMR spectra of P2 protein from bovine peripheral nerve myelin indicate that the protein contains a high degree of tertiary structure in aqueous solution. Denaturation of the protein in urea solutions is a multi-step process. Binding of lysophosphatidylcholine micelles to the protein causes a conformational change and a broadening of NMR peaks from side chains of aromatic amino acid and methionine residues, with much less effect on upfield methyl resonances.  相似文献   

9.
The effects of N-methyl-D-aspartate (NMDA) on the free intracellular Ca2+ concentration [( Ca2+]i) and the energy state in superfused cerebral cortical slices have been studied using 19F- and 31P-nuclear magnetic resonance spectroscopy. [Ca2+]i was measured using the calcium indicator 1,2-bis(2-amino-5-fluorophenoxy)ethane-N,N,N',N'-tetraacetic acid (5FBAPTA). NMDA (10 microM) in the absence of extracellular Mg2+ caused the expected rise in [Ca2+]i but produced an impairment of the energy state: the phosphocreatine (PCr) content was decreased by 42%, and the Pi/PCr ratio was increased by 55%. There was no detectable change in ATP or free intracellular Mg2+ concentration. Increasing the NMDA concentration in the superfusing medium to 100 or 400 microM caused no further increase in [Ca2+]i or further decrease in PCr content, but the Pi/PCr ratio continued to rise. The impairment of the energy state preceded the effect on [Ca2+]i, and these changes were irreversible on return to control conditions. Repeating the experiments in the presence of 1.2 mM extracellular Mg2+ resulted in similar changes in the energy state, with no change in [Ca2+]i. The possibilities that the effects were due to membrane depolarisation or to the presence of 5FBAPTA within the tissues were eliminated. The results suggest that low concentrations (10 microM) of NMDA produce an impaired energy state independent of the presence of extracellular Mg2+ and that the decreased energy state is not due to the changes in [Ca2+]i, which are seen only in the absence of extracellular Mg2+.  相似文献   

10.
Abstract: Cerebral glutamate was monitored in a superfused cerebral cortical preparation by 1H NMR spectroscopy using a semiselective spin-echo sequence N -acetyl aspartate (NAA) as an internal concentration reference. During controlled metabolic conditions, the cerebral 1H NMR-detected glutamate-to-NAA ratio was ∼ 20–30% lower than expected from the ratio of neutralized perchloric acid extracts of the preparations. Inhibition of respiration in the presence of glucose did not change the 1H NMR glutamate-to-NAA ratio in brain slice preparation. In contrast, either complete depletion of ATP during cyanide poisoning together with 0 m M glucose, anoxia in the absence of glucose, or treatment with nigericin or with a protonophore, carbonyl cyanide- m -fluorophenylhydrazone, increased 1H NMR-detected glutamate/NAA in the cerebral preparations without a change in the relative and absolute concentration ratios determined from the tissue acid extracts. Spin-spin relaxation times of glutamate and NAA peaks in anoxic slices were 749 ± 89 and 729 ± 94 ms, respectively, and thus, the portion of glutamate that could not be detected by 1H NMR was quantified in absolute terms. It was calculated that an increase in the glutamate-to-NAA ratio from 0.55 ± 0.02 to 0.67 ± 0.02 during aglycemic anoxia corresponded to some 6 mmol/kg of tissue dry weight of glutamate from the total concentration of 28 mmol/kg dry weight. It is suggested that this 22% of total glutamate pool is present in a noncytoplasmic compartment during controlled metabolic state.  相似文献   

11.
We report the first measurement of the free intracellular calcium level in an actively metabolising intact cerebral tissue preparation. To this end, we applied the recently developed 19F-nuclear magnetic resonance calcium chelator, 5,5'-F2-1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (5FBAPTA), in superfused cerebral cortical slices to give values for the intracellular Ca2+ concentration of 350 and 480 nM, at external calcium concentrations of 1.2 and 2.4 mM, respectively. Under both conditions, the intracellular Ca2+ concentration was increased by depolarisation using a high external K+ concentration. Interleaved 31P spectra showed that the presence of the 5FBAPTA had a deleterious effect on the metabolic state of the tissue with an external Ca2+ concentration of 1.2 mM, but normal viability was maintained using 2.4 mM.  相似文献   

12.
The purpose of this study was to investigate neonatal brain energy metabolism, acid, and lactate homeostasis in the period immediately following partial ischemia. Changes in brain buffering capacity were quantified by measuring mean intracellular brain pH, calculated from the chemical shift of Pi, in response to identical episodes of hypercarbia before and after ischemia. In addition, the relationship between brain buffer base deficit and intracellular pH was compared during and following ischemia. Thus, in vivo 31P and 1H nuclear magnetic resonance spectra were obtained from the brains of seven newborn piglets exposed to sequential episodes of hypercarbia, partial ischemia, and a second episode of hypercarbia in the postischemic recovery period. For the first episode of hypercarbia, brain buffering was similar to values reported for adult animals of other species (percentage pH regulation = 54 ± 16%). During ischemia, the brain base deficit per unit change in pH was ?19 ± 5 mM/pH unit, which is similar to values reported for adult rats. By 20–35 min postischemia, brain acidosis partly resolved in spite of a net increase in lactate concentration. Therefore, the consumption of lactate could not explain acid homeostasis in the first 35 min following ischemia. We conclude that H+/HCO-3 or other proton equivalent translocation mechanisms must be sufficiently developed in piglet brain to support acid regulation. This is surprising, because a substantial body of evidence implies these processes would be less active in immature brain. The second episode of hypercarbia, from 35 to 65 min postischemia, resulted in a smaller decrease in brain pH compared with the first episode, a result indicating an increase in brain buffering capacity (percentage pH regulation = 79 ± 29%). This was associated with a parallel decrease in brain lactate content, and therefore acid regulation could be attributed to either continued ion translocation or the consumption of lactate. A mild decrease in brain pH and content of energy metabolites was observed, a finding suggesting that the metabolic consequences of severe postischemic hypercarbia are neither particularly dangerous or beneficial.  相似文献   

13.
Brain metabolism and intracellular pH were studied during and after episodes of incomplete cerebral ischaemia in lambs under sodium pentobarbitone anaesthesia. 31P and 1H magnetic resonance spectroscopy was used to monitor brain pHi and brain concentrations of inorganic phosphate (Pi), phosphocreatine (PCr), beta-nucleoside triphosphate (beta NTP), and lactate. Simultaneous measurements were made of arterio-cerebral venous concentration differences (AVDs) for oxygen, glucose, and lactate. Cerebral ischaemia was induced by a combination of bilateral carotid clamping and hypotension, and the acute effects of systemic administration of glucose and sodium bicarbonate were examined. The molar ratio of glucose to oxygen uptake by the brain (6G/O2) increased above unity during cerebral ischaemia. Statistically significant AVDs for lactate were not observed. Cerebral ischaemia was associated with a reduction in brain pHi PCr/Pi ratio, and an increase in brain lactate. No effect of arterial plasma glucose on brain lactate concentration or brain pHi was evident during cerebral ischaemia or in the postischaemic period. Administration of sodium bicarbonate systemically in the postischaemic period was associated with a rise in arterial and brain tissue PCO2. A fall in brain pHi occurred which was attributable in part to coincidental brain lactate accumulation. The increase in brain lactate measured by 1H nuclear magnetic resonance in vivo during ischaemia was insufficient to account for the change in buffer base calculated to have occurred from previous estimates of brain buffering capacity.  相似文献   

14.
The metabolism of 2-fluoro-2-deoxy-D-glucose (FDG) in vivo was observed noninvasively in rat brain using 19F nuclear magnetic resonance (NMR) spectroscopy following an intravenous injection of FDG (400 mg/kg). At 3 h after infusion, four resonances with discrete chemical shifts were resolved. Chemical shift analysis of these resonances suggested the chemical identity of two of the resonances to be FDG and/or FDG-6-phosphate and 2-fluoro-2-deoxy-delta-phosphogluconolactone and/or 2-fluoro-2-deoxy-6-phosphogluconate. The chemical identities of the other two resonances remain to be elucidated. The present study indicates that the metabolism of FDG in vivo is more extensive than is previously recognized and demonstrates the feasibility of using 19F NMR spectroscopy to follow the 19F-containing metabolites of FDG in vivo.  相似文献   

15.
The purpose of the present study is to clarify the effects of hypoxia on catecholamine release and its mechanism of action. For this purpose, using cultured bovine adrenal chromaffin cells, we examined the effects of hypoxia on high (55 mM) K(+)-induced increases in catecholamine release, in cytosolic free Ca2+ concentration ([Ca2+]i), and in 45Ca2+ uptake. Experiments were carried out in media preequilibrated with a gas mixture of either 21% O2/79% N2 (control) or 100% N2 (hypoxia). High K(+)-induced catecholamine release was inhibited by hypoxia to approximately 40% of the control value, but on reoxygenation the release returned to control levels. Hypoxia had little effect on ATP concentrations in the cells. In the hypoxic medium, [Ca2+]i (measured using fura-2) gradually increased and reached a plateau of approximately 1.0 microM at 30 min, whereas the level was constant in the control medium (approximately 200 nM). High K(+)-induced increases in [Ca2+]i were inhibited by hypoxia to approximately 30% of the control value. In the cells permeabilized by digitonin, catecholamine release induced by Ca2+ was unaffected by hypoxia. Hypoxia had little effect on basal 45Ca2+ uptake into the cells, but high K(+)-induced 45Ca2+ uptake was inhibited by hypoxia. These results suggest that hypoxia inhibits high K(+)-induced catecholamine release and that this inhibition is mainly the result of the inhibition of high K(+)-induced increases in [Ca2+]i subsequent to the inhibition of Ca2+ influx through voltage-dependent Ca2+ channels.  相似文献   

16.
Changes in high-energy phosphate metabolites and the intracellular pH (pHi) were monitored in cerebral tissue during periods of hypoglycaemia and hypoxia using 31P nuclear magnetic resonance spectroscopy. Superfused brain slices were loaded with deoxyglucose at a concentration shown not to impair cerebral metabolism, and the chemical shift of the resulting 2-deoxyglucose-6-phosphate (DOG6P) peak was used to monitor the pHi. In some experiments with low circulating levels of Pi, the intracellular Pi was visible and indicated a pH identical to that of DOG6P, an observation validating its use as an indicator of pHi in cerebral tissue. The pHi was found to be unchanged during moderate hypoglycaemia; however, mild hypoxia (PO2 = 16.4 kPa) and severe hypoglycaemia produced marked reductions from the normal of 7.2 to 6.8 and 7.0, respectively. Hypoglycaemia caused a fall in the level of both phosphocreatine (PCr) and ATP, whereas hypoxia affected PCr alone, as shown previously. However, the fall in pHi was similar during the two insults, thus indicating that the change in pH is not directly linked to lactate production or to the creatine kinase reaction.  相似文献   

17.
The metabolism of 3-fluoro-3-deoxy-D-glucose (3-FDG) in rat brain in vivo was investigated noninvasively using 19F nuclear magnetic resonance (NMR) Spectroscopy. Following an intravenous infusion of 3-FDG, 400 mg/kg, four resonances assigned to the α and β anomers of 3-FDG, 3-fluoro-3-deoxy-D-sorbitol, and 3-fluoro-3-deoxy-D-fructose were clearly resolved in brain, a result indicating that 3-FDG is metabolized primarily into the aldose reductase sorbitol (ARS) pathway. An orally administered aldose reductase inhibitor, sorbinil, caused reduction of the flux of 3-FDG into the ARS, an observation suggesting that the method can be applied in quantitative studies of ARS path way activities. Studies of 24-h urine specimens showed that in addition to the two metabolites observed in brain, F-was excreted into the urine. 3-FDG appears to be a suitable metabolic probe for assessing glucose metabolism in the ARS pathway by in vivo 19F NMR Spectroscopy.  相似文献   

18.
The effects of an acute intravenous infusion of ammonium acetate on rat cerebral glutamate and glutamine concentrations, energy metabolism, and intracellular pH were measured in vivo with 1H and 31P nuclear magnetic resonance (NMR). The level of blood ammonia maintained by the infusion protocol used in this study (approximately 500 microM, arterial blood) did not cause significant changes in arterial PCO2, PO2, or pH. Cerebral glutamate levels fell to at least 80% of the preinfusion value, whereas glutamine concentrations increased 170% relative to the preinfusion controls. The fall in brain glutamate concentrations followed a time course similar to that of the rise of brain glutamine. There were no detectable changes in the content of phosphocreatine (PCr) or nucleoside triphosphates (NTP), within the brain regions contributing to the sensitive volume of the surface coil, during the ammonia infusion. Intracellular pH, estimated from the chemical shift of the inorganic phosphate resonance relative to the resonance of PCr in the 31P spectrum, was also unchanged during the period of hyperammonemia. 1H spectra, specifically edited to allow quantitation of the brain lactate content, indicated that lactate rose steadily during the ammonia infusion. Detectable increases in brain lactate levels were observed approximately 10 min after the start of the ammonia infusion and by 50 min of infusion had more than doubled. Spectra acquired from rats that received a control infusion of sodium acetate were not different from the spectra acquired prior to the infusion of either ammonium or sodium acetate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We have applied the 19F-nuclear magnetic resonance (NMR) calcium indicator 1,2-bis(2-amino-5-fluoro-phenoxy)ethane-N,N,N',N'-tetraacetic acid (5FBAPTA) to the measurement of the free intracellular calcium concentration [( Ca2+]i) in superfused brain slices. A mean +/- SD control value of 380 +/- 71 nM (n = 18) was obtained at 37 degrees C using 2.4 mM extracellular Ca2+. Subcellular fractionation studies using [3H]5FBAPTA showed that after loading of its tetraacetoxymethyl ester, approximately 55% was de-esterified, with the other 45% remaining as the tetraester bound to membranes. Of the de-esterified 5FBAPTA, greater than 90% was in the cytosolic fractions, with less than 1% in the mitochondria or microsomes. The NMR-visible de-esterified 5FBAPTA slowly disappeared from the tissue with a t1/2 of 4 h. A time course after loading confirmed that the calculated [Ca2+]i was constant over a 5-h period, although the scatter of individual results was +/- 20%. The [Ca2+]i was increased by a high extracellular K+ concentration ([K+]e), by a low extracellular concentration of Na+, and by the calcium ionophore A23187. On recovery from high [K+]e, the [Ca2+]i "overshot" to values lower than the original control value. The [Ca2+]i was surpisingly resistant to changes in extracellular Ca2+ concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号