首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Putative fitness costs provide an explanation for why ISR is induced instead of constitutive, and they might constrain the use of ISR as preventative protection of cultivated plants. Though ISR is mainly elicited by and effective against pathogens, further biotic agents such as leaf-chewing herbivores, leaf miners, aphids and even non-pathogenic root-colonising bacteria can induce systemic pathogen resistance, while some ISR traits can have a defensive effect against herbivores. ‘Cross-resistance’ elicited by and effective against non-microbial plant enemies thus might add significantly to the function of ISR. On the other hand, ‘trade-offs” have been reported, i.e. increased susceptibility to herbivores in ISR-expressing plants. Finally, ISR is a rather unspecific response, being active against different microbes. It thus might have effects on mutualistic bacteria and fungi, too. The question of how expression of ISR affects the large variety of mutualistic and antagonistic plant-microbe and plant-insect interactions cannot yet be answered. This knowledge is, however, needed to obtain a risk assessment for the use of chemically induced or genetically engineered ISR in crop protection. This review aims to provide an overview and to highlight some of the many open questions which require intensive ecological research.  相似文献   

2.
3.
BRAF inhibitors improve melanoma patient survival, but resistance invariably develops. Here we report the discovery of a novel BRAF mutation that confers resistance to PLX4032 employing whole‐exome sequencing of drug‐resistant BRAFV600K melanoma cells. We further describe a new screening approach, a genome‐wide piggyBac mutagenesis screen that revealed clinically relevant aberrations (N‐terminal BRAF truncations and CRAF overexpression). The novel BRAF mutation, a Leu505 to His substitution (BRAFL505H), is the first resistance‐conferring second‐site mutation identified in BRAF mutant cells. The mutation replaces a small nonpolar amino acid at the BRAF‐PLX4032 interface with a larger polar residue. Moreover, we show that BRAFL505H, found in human prostate cancer, is itself a MAPK‐activating, PLX4032‐resistant oncogenic mutation. Lastly, we demonstrate that the PLX4032‐resistant melanoma cells are sensitive to novel, next‐generation BRAF inhibitors, especially the ‘paradox‐blocker’ PLX8394, supporting its use in clinical trials for treatment of melanoma patients with BRAF‐mutations.  相似文献   

4.
LysoTracker and MitoTracker Red are fluorescent probes widely used for viable cell staining of lysosomes and mitochondria, respectively. They are utilized to study organelle localization and their resident proteins, assess organelle functionality and quantification of organelle numbers. The ATP‐driven efflux transporter P‐glycoprotein (P‐gp) is expressed in normal and malignant tissues and extrudes structurally distinct endogenous and exogenous cytotoxic compounds. Thus, once aromatic hydrophobic compounds such as the above‐mentioned fluorescent probes are recognized as transport substrates, efflux pumps including P‐gp may abolish their ability to reach their cellular target organelles. Herein, we show that LysoTracker and MitoTracker Red are expelled from P‐gp‐overexpressing cancer cells, thus hindering their ability to fluorescently mark target organelles. We further demonstrate that tariquidar, a potent P‐gp transport inhibitor, restores LysoTracker and MitoTracker Red cell entry. We conclude that LysoTracker and MitoTracker Red are P‐gp transport substrates, and therefore, P‐gp expression must be taken into consideration prior to cellular applications using these probes. Importantly, as MitoTracker was a superior P‐gp substrate than LysoTracker Red, we discuss the implications for the future design of chemotherapeutics evading cancer multidrug resistance. Furthermore, restoration of MitoTracker Red fluorescence in P‐gp‐overexpressing cells may facilitate the identification of potent P‐gp transport inhibitors (i.e. chemosensitizers).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号