首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
While it is generally assumed that specialist species are more vulnerable to disturbance compared with generalist counterparts, this has rarely been tested in coastal marine ecosystems, which are increasingly subject to a wide range of natural and anthropogenic disturbances. Habitat specialists are expected to be more vulnerable to habitat loss because habitat availability exerts a greater limitation on population size, but it is also possible that specialist species may escape effects of disturbance if they use habitats that are generally resilient to disturbance. This study quantified specificity in use of different coral species by six coral‐dwelling damselfishes (Chromis viridis, C. atripectoralis, Dascyllus aruanus, D. reticulatus, Pomacentrus moluccensis, and P. amboinensis) and related habitat specialization to proportional declines in their abundance following habitat degradation caused by outbreaks of the coral eating starfish, Acanthaster planci. The coral species preferred by most coral‐dwelling damselfishes (e.g., Pocillopora damicornis) were frequently consumed by coral eating crown‐of‐thorns starfish, such that highly specialized damselfishes were disproportionately affected by coral depletion, despite using a narrower range of different coral species. Vulnerability of damselfishes to this disturbance was strongly correlated with both their reliance on corals and their degree of habitat specialization. Ongoing disturbances to coral reef ecosystems are expected, therefore, to lead to fundamental shifts in the community structure of fish communities where generalists are favored over highly specialist species.  相似文献   

2.
Severe climatic disturbance events often have major impacts on coral reef communities, generating cycles of decline and recovery, and in some extreme cases, community‐level phase shifts from coral‐ to algal‐dominated states. Benthic habitat changes directly affect reef fish communities, with low coral cover usually associated with low fish diversity and abundance. No‐take marine reserves (NTRs) are widely advocated for conserving biodiversity and enhancing the sustainability of exploited fish populations. Numerous studies have documented positive ecological and socio‐economic benefits of NTRs; however, the ability of NTRs to ameliorate the effects of acute disturbances on coral reefs has seldom been investigated. Here, we test these factors by tracking the dynamics of benthic and fish communities, including the important fishery species, coral trout (Plectropomus spp.), over 8 years in both NTRs and fished areas in the Keppel Island group, Great Barrier Reef, Australia. Two major disturbances impacted the reefs during the monitoring period, a coral bleaching event in 2006 and a freshwater flood plume in 2011. Both disturbances generated significant declines in coral cover and habitat complexity, with subsequent declines in fish abundance and diversity, and pronounced shifts in fish assemblage structure. Coral trout density also declined in response to the loss of live coral, however, the approximately 2:1 density ratio between NTRs and fished zones was maintained over time. The only post‐disturbance refuges for coral trout spawning stocks were within the NTRs that escaped the worst effects of the disturbances. Although NTRs had little discernible effect on the temporal dynamics of benthic or fish communities, it was evident that the post‐disturbance refuges for coral trout spawning stocks within some NTRs may be critically important to regional‐scale population persistence and recovery.  相似文献   

3.
Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no‐take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60–220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short‐distance larval dispersal within regions (200 m to 50 km) and long‐distance, multidirectional dispersal of up to ~250 km among regions. Dispersal strength declined significantly with distance, with best‐fit dispersal kernels estimating median dispersal distances of ~110 km for P. maculatus and ~190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long‐distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations.  相似文献   

4.
5.
Aim We examined data on corals and reef fishes to determine how particular local habitat types contribute to variation in community structure across regions covering gradients in species richness and how consistent this was over time. Location Great Barrier Reef (GBR), Australia. Methods We compared large‐scale (1300 km), long‐term (11 years) data on fishes and corals that were collected annually at fixed sites in three habitats (inshore, mid‐shelf and outer‐shelf reefs) and six regions (latitudinal sectors) along a gradient of regional species richness in both communities. We used canonical approaches to partition variation in community structure (sites × species abundance data matrices) into components associated with habitat, region and time and Procrustes analyses to assess the degree of concordance between coral and fish community structure. Results Remarkably similar patterns emerged for both fish and coral communities occupying the same sites. Reefs that had similar coral communities also had similar fish communities. The fraction of the community data that could be explained by regional effects, independent of pure habitat effects, was similar in both fish (33%) and coral (36.9%) communities. Pure habitat effects were slightly greater in the fish (31.3%) than in the coral (20.1%) community. Time explained relatively little variation (fish = 7.9%, corals = 9.6%) compared with these two spatial factors. Conclusions Our results indicate either that fish and coral communities were structured in similar ways by processes associated with region, habitat and time, or that the variation in fish community structure tracked variation associated with the coral communities at these sites and thereby reflects an indirect link between the environment and the structure of fish communities mediated by corals. Irrespective of the causes of such commonality, we demonstrate that community structure, not just species richness, can be related to both habitat differences and regional setting simultaneously.  相似文献   

6.
In the face of increasing cumulative effects from human and natural disturbances, sustaining coral reefs will require a deeper understanding of the drivers of coral resilience in space and time. Here we develop a high‐resolution, spatially explicit model of coral dynamics on Australia's Great Barrier Reef (GBR). Our model accounts for biological, ecological and environmental processes, as well as spatial variation in water quality and the cumulative effects of coral diseases, bleaching, outbreaks of crown‐of‐thorns starfish (Acanthaster cf. solaris), and tropical cyclones. Our projections reconstruct coral cover trajectories between 1996 and 2017 over a total reef area of 14,780 km2, predicting a mean annual coral loss of ?0.67%/year mostly due to the impact of cyclones, followed by starfish outbreaks and coral bleaching. Coral growth rate was the highest for outer shelf coral communities characterized by digitate and tabulate Acropora spp. and exposed to low seasonal variations in salinity and sea surface temperature, and the lowest for inner‐shelf communities exposed to reduced water quality. We show that coral resilience (defined as the net effect of resistance and recovery following disturbance) was negatively related to the frequency of river plume conditions, and to reef accessibility to a lesser extent. Surprisingly, reef resilience was substantially lower within no‐take marine protected areas, however this difference was mostly driven by the effect of water quality. Our model provides a new validated, spatially explicit platform for identifying the reefs that face the greatest risk of biodiversity loss, and those that have the highest chances to persist under increasing disturbance regimes.  相似文献   

7.
8.
Global warming is expected to reduce body sizes of ectothermic animals. Although the underlying mechanisms of size reductions remain poorly understood, effects appear stronger at latitudinal extremes (poles and tropics) and in aquatic rather than terrestrial systems. To shed light on this phenomenon, we examined the size dependence of critical thermal maxima (CTmax) and aerobic metabolism in a commercially important tropical reef fish, the leopard coral grouper (Plectropomus leopardus) following acclimation to current‐day (28.5 °C) vs. projected end‐of‐century (33 °C) summer temperatures for the northern Great Barrier Reef (GBR). CTmax declined from 38.3 to 37.5 °C with increasing body mass in adult fish (0.45–2.82 kg), indicating that larger individuals are more thermally sensitive than smaller conspecifics. This may be explained by a restricted capacity for large fish to increase mass‐specific maximum metabolic rate (MMR) at 33 °C compared with 28.5 °C. Indeed, temperature influenced the relationship between metabolism and body mass (0.02–2.38 kg), whereby the scaling exponent for MMR increased from 0.74 ± 0.02 at 28.5 °C to 0.79 ± 0.01 at 33 °C, and the corresponding exponents for standard metabolic rate (SMR) were 0.75 ± 0.04 and 0.80 ± 0.03. The increase in metabolic scaling exponents at higher temperatures suggests that energy budgets may be disproportionately impacted in larger fish and contribute to reduced maximum adult size. Such climate‐induced reductions in body size would have important ramifications for fisheries productivity, but are also likely to have knock‐on effects for trophodynamics and functioning of ecosystems.  相似文献   

9.
The dynamics and prevalence of mutualistic interactions, which are responsible for the maintenance and structuring of all ecological communities, are vulnerable to changes in abiotic and biotic environmental conditions. Mutualistic outcomes can quickly shift from cooperation to conflict, but it unclear how resilient and stable mutualistic outcomes are to more variable conditions. Tidally controlled coral atoll lagoons that experience extreme diurnal environmental shifts thus provide a model from which to test plasticity in mutualistic behavior of dedicated (formerly obligate) cleaner fish, which acquire all their food resources through client interactions. Here, we investigated cleaning patterns of a model cleaner fish species, the bluestreak wrasse (Labroides dimidiatus), in an isolated tidal lagoon on the Great Barrier Reef. Under tidally restricted conditions, uniquely both adults and juveniles were part‐time facultative cleaners, pecking on Isopora palifera coral. The mutualism was not completely abandoned, with adults also wandering across the reef in search of clients, rather than waiting at fixed site cleaning stations, a behavior not yet observed at any other reef. Contrary to well‐established patterns for this cleaner, juveniles appeared to exploit the system, by biting (“cheating”) their clients more frequently than adults. We show for the first time, that within this variable tidal environment, where mutualistic cleaning might not represent a stable food source, the prevalence and dynamics of this mutualism may be breaking down (through increased cheating and partial abandonment). Environmental variability could thus reduce the pervasiveness of mutualisms within our ecosystems, ultimately reducing the stability of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号