首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species coexistence in diverse communities likely results from multiple interacting factors. Mechanisms such as conspecific negative density dependence (CNDD) and varying life‐history strategies related to resource partitioning are known to influence plant fitness, and thereby community composition and diversity. However, we have little understanding of how these mechanisms interact and how they vary across life stages. Here, we document the interaction between CNDD and life‐history strategy, based on growth‐mortality trade‐offs, from seedling to adult tree for 47 species in a tropical forest. Species’ life‐history strategies remained consistent across stages: fast‐growing species had higher mortality than slow‐growing species at all stages. In contrast, mean CNDD was strongest at early life stages (i.e. seedling, sapling). Fast‐growing species tended to suffer greater CNDD than slow‐growing species at several, but not all life stages. Overall, our results demonstrate that coexistence mechanisms interact across multiple life stages to shape diverse tree communities.  相似文献   

2.
Negative density‐dependent seedling mortality has been widely detected in tropical, subtropical and temperate forests, with soil pathogens as a major driver. Here we investigated how host density affects the composition of soil pathogen communities and consequently influences the strength of plant‐soil feedbacks. In field censuses of six 1‐ha permanent plots, we found that survival was much lower for newly germinated seedlings that were surrounded by more conspecific adults. The relative abundance of pathogenic fungi in soil increased with increasing conspecific tree density for five of nine tree species; more soil pathogens accumulated around roots where adult tree density was higher, and this greater pathogen frequency was associated with lower seedling survival. Our findings show how tree density influences populations of soil pathogens, which creates plant‐soil feedbacks that contribute to community‐level and population‐level compensatory trends in seedling survival.  相似文献   

3.
Life‐history theory posits that trade‐offs between demographic rates constrain the range of viable life‐history strategies. For coexisting tropical tree species, the best established demographic trade‐off is the growth‐survival trade‐off. However, we know surprisingly little about co‐variation of growth and survival with measures of reproduction. We analysed demographic rates from seed to adult of 282 co‐occurring tropical tree and shrub species, including measures of reproduction and accounting for ontogeny. Besides the well‐established fast–slow continuum, we identified a second major dimension of demographic variation: a trade‐off between recruitment and seedling performance vs. growth and survival of larger individuals (≥ 1 cm dbh) corresponding to a ‘stature–recruitment’ axis. The two demographic dimensions were almost perfectly aligned with two independent trait dimensions (shade tolerance and size). Our results complement recent analyses of plant life‐history variation at the global scale and reveal that demographic trade‐offs along multiple axes act to structure local communities.  相似文献   

4.
Local tree species diversity is maintained in part by conspecific negative density dependence (CNDD). This pervasive mechanism occurs in a variety of forms and ecosystems, but research to date has been heavily skewed toward tree seedling survival in tropical forests. To evaluate CNDD more broadly, we investigated how sapling growth rates were affected by conspecific adult neighbors in a fully mapped 25.6 ha temperate deciduous forest. We examined growth rates as a function of the local adult tree neighborhood (via spatial autoregressive modeling) and compared the spatial positioning of faster‐growing and slower‐growing saplings with respect to adult conspecific and heterospecific trees (via bivariate point pattern analysis). In addition, to determine whether CNDD‐driven variation in growth rates leaves a corresponding spatial signal, we extended our point pattern analysis to a static, growth‐independent comparison of saplings and the next larger size class. We found that negative conspecific effects on sapling growth were most prevalent. Five of the nine species that were sufficiently abundant for analysis exhibited CNDD, while only one species showed evidence of a positive conspecific effect, and one or two species, depending on the analysis, displayed heterospecific effects. There was general agreement between the autoregressive models and the point pattern analyses based on sapling growth rates, but point pattern analyses based on single‐point‐in‐time size classes yielded results that differed markedly from the other two approaches. Our work adds to the growing body of evidence that CNDD is an important force in temperate forests, and demonstrates that this process extends to sapling growth rates. Further, our findings indicate that point pattern analyses based solely on size classes may fail to detect the process of interest (e.g., neighborhood‐driven variation in growth rates), in part due to the confounding of tree size and age.  相似文献   

5.
Recent studies demonstrate that by focusing on traits linked to fundamental plant life‐history trade‐offs, ecologists can begin to predict plant community structure at global scales. Yet, consumers can strongly affect plant communities, and means for linking consumer effects to key plant traits and community assembly processes are lacking. We conducted a global literature review and meta‐analysis to evaluate whether seed size, a trait representing fundamental life‐history trade‐offs in plant offspring investment, could predict post‐dispersal seed predator effects on seed removal and plant recruitment. Seed size predicted small mammal seed removal rates and their impacts on plant recruitment consistent with optimal foraging theory, with intermediate seed sizes most strongly impacted globally – for both native and exotic plants. However, differences in seed size distributions among ecosystems conditioned seed predation patterns, with relatively large‐seeded species most strongly affected in grasslands (smallest seeds), and relatively small‐seeded species most strongly affected in tropical forests (largest seeds). Such size‐dependent seed predation has profound implications for coexistence among plants because it may enhance or weaken opposing life‐history trade‐offs in an ecosystem‐specific manner. Our results suggest that seed size may serve as a key life‐history trait that can integrate consumer effects to improve understandings of plant coexistence.  相似文献   

6.
Conspecific negative density dependence (CNDD) is one of the main mechanisms influencing diversity maintenance in tropical forests. Tropical highland forests, in contrast to most lowland forests, are commonly dominated by a few tree species, and testing the importance of density dependence effects on seedling establishment of dominant trees may provide insights on the mechanisms regulating population dynamics and forest composition of tropical highlands. We tested the effect of CNDD regulation on seedling survival and recruitment of Quercus costaricensis, a monodominant oak in the Talamanca highland forests of Costa Rica. We used Ripley's K and generalized linear mixed models to test the effects of conspecific density, distance to the nearest adult, density of Chusquea bamboo shoots, and herbivory on the annual survival probability of 3579 seedlings between 2014 and 2017. We did not find a significant effect of CNDD on seedling survival. However, bamboo density and herbivory both significantly decreased oak seedling survival. All seedlings had signs of herbivory and predator satiation may explain the lack of density dependent regulation in seedlings of this species. We argue that the lack of intraspecific density regulation at the seedling stage may contribute to explain the dominance of Q. costaricensis in the highland forests of Costa Rica. Local seedling dynamics of this endemic oak are instead regulated by herbivory and the density of Chusquea. Abstract in Spanish is available with online material.  相似文献   

7.
Tropical forest degradation is a global environmental issue. In degraded forests, seedling recruitment of canopy trees is vital for forest regeneration and recovery. We investigated how selective logging, a pervasive driver of tropical forest degradation, impacts canopy tree seedling recruitment, focusing on an endemic dipterocarp Dryobalanops lanceolata in Sabah, Borneo. During a mast‐fruiting event in intensively logged and nearby unlogged forest, we examined four stages of the seedling recruitment process: seed production, seed predation, and negative density‐dependent germination and seedling survival. Our results suggest that each stage of the seedling recruitment process is altered in logged forest. The seed crop of D. lanceolata trees in logged forest was one‐third smaller than that produced by trees in unlogged forest. The functional role of vertebrates in seed predation increased in logged forest while that of non‐vertebrates declined. Seeds in logged forest were less likely to germinate than those in unlogged forest. Germination increased with local‐scale conspecific seed density in unlogged forest, but seedling survival tended to decline. However, both germination and seedling survival increased with local‐scale conspecific seed density in logged forest. Notably, seed crop size, germination, and seedling survival tended to increase for larger trees in both unlogged and logged forests, suggesting that sustainable timber extraction and silvicultural practices designed to minimize damage to the residual stand are important to prevent seedling recruitment failure. Overall, these impacts sustained by several aspects of seedling recruitment in a mast‐fruiting year suggest that intensive selective logging may affect long‐term population dynamics of D. lanceolata. It is necessary to establish if other dipterocarp species, many of which are threatened by the timber trade, are similarly affected in tropical forests degraded by intensive selective logging.  相似文献   

8.
A gap remains in our understanding of how host‐specific fungal pathogens impact negative density dependence (NDD). Here, we investigated survival of Cinnamomum subavenium Miq. seedlings, the dominant canopy species in a seasonal tropical evergreen forest, Thailand. It is infected by a host‐specific fungus that is easily identifiable in the field. We quantified the effects of conspecific seedling and adult density on fungal infection and seedling survival over a wide range of environmental heterogeneity in elevation, understory vegetation and presence of forest gaps. Generalized linear mixed models (GLMMs) for seedling survival revealed that fungal infection significantly reduced survival and had the strongest effect on seedling survival as compared with conspecific density and environmental heterogeneity. Adult conspecific density was not, however, significantly correlated with the probability of infection, and conspecific seedling density was positively associated with increased infection only at high elevations. In contrast to infection, we found a significant positive correlation between conspecific seedling density and the probability of seedling survival. Consequently, our results demonstrate that fungal infection can have major impacts on seedling survival, but not in a manner consistent with local NDD effects on seedlings, as assumed in the Janzen–Connell hypothesis. Our study provides an example of how quantifying the interaction between environmental heterogeneity and a host‐specific plant‐pathogen can yield unexpected insights into the dynamics of seedling populations. The combined effects of host‐specific pathogens and environmental heterogeneity on survival of dominant seedling species may ultimately provide a chance for rarer species to recruit.  相似文献   

9.
Substantial intra‐specific trait variation exists within plant communities, and in theory this variation could influence community dynamics. Although recent research has focused on intra‐specific variation in traits themselves, it is the influence of this variation on plant performance that makes intra‐specific trait variation relevant to ecological dynamics within or among species. Understanding the links between trait and performance variation, and the role of traits in mediating relationships among multiple components of performance, is critical for assessing the importance of intra‐specific trait variation for community dynamics. Seed size is thought to affect aspects of plant performance including fecundity, seedling growth, dispersal and tolerance of natural enemies. For two tropical tree species, we assessed how seed size was related to performance variation within each species and determined whether intra‐specific trait variation mediates intra‐specific performance tradeoffs. We used field seed rain collection to characterize size‐dependent outcomes of dispersal, sowed seeds of known size in soil collected near or far from conspecifics to characterize susceptibility to soil pathogens, and monitored growth of seedlings from seeds of known size. We found that intra‐specific seed size variation caused intra‐specific performance variation. The degree of trait‐based performance variation was consistently smaller than the degree of trait variation, and seed size influenced different components of performance for each species. One species exhibited a tradeoff in which small seeds had a fecundity advantage (more seedlings per unit reproductive mass) but produced smaller seedlings, whereas the other species exhibited a tradeoff in which small seeds dispersed to areas of low conspecific density but were less tolerant of density‐responsive natural enemies. Our results indicate that a single trait can influence multiple components of performance and can mediate different tradeoffs in co‐occurring species. Complex and heterogeneous effects of a single trait in multidimensional niche space may favour inter‐specific niche differentiation and coexistence.  相似文献   

10.
The diversity of traits associated with plant regeneration is often shaped by functional trade‐offs where plants typically do not excel at every function because resources allocated to one function cannot be allocated to another. By analyzing correlations among seed traits, empirical studies have shown that there is a trade‐off between seedling development and the occupation of new habitats, although only a small range of taxa have been tested; whether such trade‐off exists in a biodiverse and complex landscape remains unclear. Here, we amassed seed trait data of 1,119 species from a biodiversity hotspot of the Mountains of Southwest China and analyzed the relationship between seed mass and the number of seeds and between seed mass and time to germination. Our results showed that seed mass was negatively correlated with seed number but positively correlated with time to germination. The same trend was found regardless of variation in life‐form and phylogenetic conservatism. Furthermore, the relation between seed mass and other seed traits was randomly dispersed across the phylogeny at both the order and family levels. Collectively, results suggest that there is a functional trade‐off between seedling development and new habitat occupation for seed plants in this region. Larger seeds tend to produce fewer seedlings but with greater fitness compared to those produced by smaller seeds, whereas smaller seeds tend to have a larger number of seeds that germinate faster compared to large‐seeded species. Apart from genetic constraints, species that produce large seeds will succeed in sites where resource availability is low, whereas species with high colonization ability (those that produce a high number of seeds per fruit) will succeed in new niches. This study provides a mechanistic explanation for the relatively high levels of plant diversity currently found in a heterogeneous region of the Mountains of Southwest China.  相似文献   

11.
Life‐history theory predicts trade‐offs between reproductive and survival traits such that different strategies or environmental constraints may yield comparable lifetime reproductive success among conspecifics. Food availability is one of the most important environmental factors shaping developmental processes. It notably affects key life‐history components such as reproduction and survival prospect. We investigated whether food resource availability could also operate as an ultimate driver of life‐history strategy variation between species. During 13 years, we marked and recaptured young and adult sibling mouse‐eared bats (Myotis myotis and Myotis blythii) at sympatric colonial sites. We tested whether distinct, species‐specific trophic niches and food availability patterns may drive interspecific differences in key life‐history components such as age at first reproduction and survival. We took advantage of a quasi‐experimental setting in which prey availability for the two species varies between years (pulse vs. nonpulse resource years), modeling mark‐recapture data for demographic comparisons. Prey availability dictated both adult survival and age at first reproduction. The bat species facing a more abundant and predictable food supply early in the season started its reproductive life earlier and showed a lower adult survival probability than the species subjected to more limited and less predictable food supply, while lifetime reproductive success was comparable in both species. The observed life‐history trade‐off indicates that temporal patterns in food availability can drive evolutionary divergence in life‐history strategies among sympatric sibling species.  相似文献   

12.
Species responses to fluctuating environments structure population and community dynamics in variable ecosystems. Although offspring number is commonly used to measure these responses, maternal effects on offspring quality may be an important but largely unrecognised determinant of long‐term population growth. We selected 29 species across a Mediterranean annual plant phylogeny, and grew populations of each species in wet and dry conditions to determine responses in seed number and maternal effects (seed size, seed dormancy, and seedling growth). Maternal effects were evident in over 40% of species, but only 24% responded through seed number. Despite a strong trade‐off between seed size and seed number among species, there was no consistent trade‐off within species; we observed correlations that ranged from positive to negative. Overall, species in this plant guild show a complex range of responses to environmental variation that may be underestimated when only seed number responses are considered.  相似文献   

13.
Density dependence and habitat heterogeneity have been recognized as important driving mechanisms that shape the patterns of seedling survival and promote species coexistence in species‐rich forests. In this study, we evaluated the relative importance of density dependence by conspecific, heterospecific, and phylogenetically related neighbors and habitat heterogeneity on seedling survival in the Lienhuachih (LHC) Forest, a subtropical, evergreen forest in central Taiwan. Age‐specific effects of different variables were also studied. We monitored the fates of 1,642 newly recruited seedlings of woody plants within a 25‐ha Forest Dynamics Plot for 2 years. The effects of conspecific, heterospecific, and phylogenetically related neighbors and habitat heterogeneity on seedling survival were analyzed by generalized linear mixed models. Our results indicated that conspecific negative density dependence (CNDD) had a strong impact on seedling survival, and the effects of CNDD increased with seedling age. Heterospecific positive density dependence (HPDD) and phylogenetic positive density dependence (PPDD) had a significant influence on the survival of seedlings, and stronger HPDD and PPDD effects were detected for older seedlings. Furthermore, seedling survival differed among habitats significantly. Seedling survival was significantly higher in the plateau, high‐slope, and low‐slope habitats than in the valley. Overall, our results suggested that the effects of CNDD, HPDD, PPDD, and habitat heterogeneity influenced seedling survival simultaneously in the LHC subtropical forest, but their relative importance varied with seedling age. Such findings from our subtropical forest were slightly different from tropical forests, and these contrasting patterns may be attributed to differences in abiotic environments. These findings highlight the importance to incorporate phylogenetic relatedness, seedling age, and habitat heterogeneity when investigating the impacts of density dependence on seedling survival that may contribute to species coexistence in seedling communities.  相似文献   

14.
Hosts can utilize different types of defense against the effects of parasitism, including avoidance, resistance, and tolerance. Typically, there is tremendous heterogeneity among hosts in these defense mechanisms that may be rooted in the costs associated with defense and lead to trade‐offs with other life‐history traits. Trade‐offs may also exist between the defense mechanisms, but the relationships between avoidance, resistance, and tolerance have rarely been studied. Here, we assessed these three defense traits under common garden conditions in a natural host–parasite system, the trematode eye‐fluke Diplostomum pseudospathaceum and its second intermediate fish host. We looked at host individuals originating from four genetically distinct populations of two closely related salmonid species (Atlantic salmon, Salmo salar and sea trout, Salmo trutta trutta) to estimate the magnitude of variation in these defense traits and the relationships among them. We show species‐specific variation in resistance and tolerance and population‐specific variation in resistance. Further, we demonstrate evidence for a trade‐off between resistance and tolerance. Our results suggest that the variation in host defense can at least partly result from a compromise between different interacting defense traits, the relative importance of which is likely to be shaped by environmental components. Overall, this study emphasizes the importance of considering different components of the host defense system when making predictions on the outcome of host–parasite interactions.  相似文献   

15.
Functional trade‐offs have long been recognised as important mechanisms of species coexistence, but direct experimental evidence for such mechanisms is extremely rare. Here, we test the effect of one classical trade‐off – a negative correlation between seed size and seed number – by establishing microcosm plant communities with positive, negative and no correlation between seed size and seed number and analysing the effect of the seed size/number correlation on species richness. Consistent with theory, a negative correlation between seed size and seed number led to a higher number of species in the communities and a corresponding wider range of seed size (a measure of functional richness) by promoting coexistence of large‐ and small‐seeded species. Our study provides the first direct evidence that a seed size/number trade‐off may contribute to species coexistence, and at a wider context, demonstrates the potential role of functional trade‐offs in maintaining species diversity.  相似文献   

16.
Predicting the fate of tropical forests under a changing climate requires understanding species responses to climatic variability and extremes. Seedlings may be particularly vulnerable to climatic stress given low stored resources and undeveloped roots; they also portend the potential effects of climate change on future forest composition. Here we use data for ca. 50,000 tropical seedlings representing 25 woody species to assess (i) the effects of interannual variation in rainfall and solar radiation between 2007 and 2016 on seedling survival over 9 years in a subtropical forest; and (ii) how spatial heterogeneity in three environmental factors—soil moisture, understory light, and conspecific neighborhood density—modulate these responses. Community‐wide seedling survival was not sensitive to interannual rainfall variability but interspecific variation in these responses was large, overwhelming the average community response. In contrast, community‐wide responses to solar radiation were predominantly positive. Spatial heterogeneity in soil moisture and conspecific density were the predominant and most consistent drivers of seedling survival, with the majority of species exhibiting greater survival at low conspecific densities and positive or nonlinear responses to soil moisture. This environmental heterogeneity modulated impacts of rainfall and solar radiation. Negative conspecific effects were amplified during rainy years and at dry sites, whereas the positive effects of radiation on survival were more pronounced for seedlings existing at high understory light levels. These results demonstrate that environmental heterogeneity is not only the main driver of seedling survival in this forest but also plays a central role in buffering or exacerbating impacts of climate fluctuations on forest regeneration. Since seedlings represent a key bottleneck in the demographic cycle of trees, efforts to predict the long‐term effects of a changing climate on tropical forests must take into account this environmental heterogeneity and how its effects on regeneration dynamics play out in long‐term stand dynamics.  相似文献   

17.
1. Evolutionary increases in dispersal‐related traits are frequently documented during range expansions. Investment in flight‐related traits is energetically costly and a trade‐off with fecundity may be expected during range expansion. 2. However, in contrast to wing‐dimorphic species, this trade‐off is not general in wing‐monomorphic species. In the absence of a dispersal‐‐fecundity trade‐off, an increased investment in clutch size at the expansion front is expected possibly at a cost of reduced offspring size. 3. The study evaluated investment in female flight morphology and fecundity‐related traits (clutch size, hatchling size) and potential trade‐offs among these traits in replicated populations of the poleward range‐expanding damselfly Coenagrion scitulum. 4. Females at the expansion front had a higher relative thorax length, indicating an increased investment in flight; this can be explained by spatial sorting of dispersal ability or in situ natural selection at the expansion front. Edge females produced larger hatchlings, however, this pattern was totally driven by the population‐specific thermal larval regimes and could not be attributed to the range expansion per se. By contrast, clutch sizes did not differ between core and edge populations. There was no signal of a dispersal–fecundity trade‐off either for a trade‐off between clutch size and hatchling size. 5. These results indicate that evolution of a higher dispersal ability at the expansion front of C. scitulum does not trade off with investment in fecundity, hence a dispersal–fecundity trade‐off is unlikely to slow down range expansion of this species.  相似文献   

18.
Question: Land‐use change has a major impact on terrestrial plant communities by affecting fertility and disturbance. We test how particular combinations of plant functional traits can predict species responses to these factors and their abundance in the field by examining whether trade‐offs at the trait level (fundamental trade‐offs) are linked to trade‐offs at the response level (secondary trade‐offs). Location: Central French Alps. Methods: We conducted a pot experiment in which we characterized plant trait syndromes by measuring whole plant and leaf traits for six dominant species, originating from contrasting subalpine grassland types. We characterized their response to nutrient availability, shading and clipping. We quantified factors linked with different land usage in the field to test the relevance of our experimental treatments. Results: We showed that land management affected nutrient concentration in soil, light availability and disturbance intensity. We identified particular suites of traits linked to plant stature and leaf structure which were associated with species responses to these environmental factors. Leaf dry matter content separates fast and slow growing species. Height and lateral spread separated tolerant and intolerant species to shade and clipping. Discussion and Conclusion: Two fundamental trade‐offs based on stature traits and leaf traits were linked to two secondary trade‐offs based on response to fertilization shade and mowing. Based on these trade‐offs, we discuss four different species strategies which could explain and predict species distributions and traits syndrome at community scale under different land‐uses in subalpine grasslands.  相似文献   

19.
Conspecific negative density dependence (CNDD) is thought to promote plant species diversity. Theoretical studies showing the importance of CNDD often assumed that all species are equally susceptible to CNDD; however, recent empirical studies have shown species can differ greatly in their susceptibility to CNDD. Using a theoretical model, we show that interspecific variation in CNDD can dramatically alter its impact on diversity. First, if the most common species are the least regulated by CNDD, then the stabilising benefit of CNDD is reduced. Second, when seed dispersal is limited, seedlings that are susceptible to CNDD are at a competitive disadvantage. When parameterised with estimates of CNDD from a tropical tree community in Panama, our model suggests that the competitive inequalities caused by interspecific variation in CNDD may undermine many species’ ability to persist. Thus, our model suggests that variable CNDD may make communities less stable, rather than more stable.  相似文献   

20.
Forest community structure may be influenced by seedling density dependence, however, the effect is loosely coupled with population dynamics and diversity in the short term. In the long term the strength of conspecific density dependence may fluctuate over time because of seedling abundance, yet few long‐term studies exist. Based on 11 years of seedling census data and tree census data from a 25‐ha temperate forest plot in Northeast China, we used generalized linear mixed models to test the relative effects of local neighborhood density and abiotic factors on seedling density and seedling survival. Spatial point pattern analysis was used to determine if spatial patterns of saplings and juveniles, in relation to conspecific adults, were in accordance with patterns uncovered by conspecific negative density dependence at the seedling stage. Our long‐term results showed that seedling density was mainly positively affected by conspecific density, suggesting dispersal limitation of seedling development. The probability of seedling survival significantly decreased over 1 year with increasing conspecific density, indicating conspecific negative density dependence in seedling establishment. Although there was variation in conspecific negative density dependence at the seedling stage among species and across years, a dispersed pattern of conspecific saplings relative to conspecific adults at the local scale (<10 m) was observed in four of the 11 species examined. Overall, sapling spatial patterns were consistent with the impacts of conspecific density on seedling dynamics, which suggests that conspecific negative density dependence is persistent over the long term. From the long‐term perspective, conspecific density dependence is an important driver of species coexistence in temperate forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号