首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ecology letters》2018,21(1):31-42
Humans require multiple services from ecosystems, but it is largely unknown whether trade‐offs between ecosystem functions prevent the realisation of high ecosystem multifunctionality across spatial scales. Here, we combined a comprehensive dataset (28 ecosystem functions measured on 209 forest plots) with a forest inventory dataset (105,316 plots) to extrapolate and map relationships between various ecosystem multifunctionality measures across Europe. These multifunctionality measures reflected different management objectives, related to timber production, climate regulation and biodiversity conservation/recreation. We found that trade‐offs among them were rare across Europe, at both local and continental scales. This suggests a high potential for ‘win‐win’ forest management strategies, where overall multifunctionality is maximised. However, across sites, multifunctionality was on average 45.8‐49.8% below maximum levels and not necessarily highest in protected areas. Therefore, using one of the most comprehensive assessments so far, our study suggests a high but largely unrealised potential for management to promote multifunctional forests.  相似文献   

2.
Intensification of land use by humans has led to a homogenization of landscapes and decreasing resilience of ecosystems globally due to a loss of biodiversity, including the majority of forests. Biodiversity–ecosystem functioning (BEF) research has provided compelling evidence for a positive effect of biodiversity on ecosystem functions and services at the local (α-diversity) scale, but we largely lack empirical evidence on how the loss of between-patch β-diversity affects biodiversity and multifunctionality at the landscape scale (γ-diversity). Here, we present a novel concept and experimental framework for elucidating BEF patterns at α-, β-, and γ-scales in real landscapes at a forest management-relevant scale. We examine this framework using 22 temperate broadleaf production forests, dominated by Fagus sylvatica. In 11 of these forests, we manipulated the structure between forest patches by increasing variation in canopy cover and deadwood. We hypothesized that an increase in landscape heterogeneity would enhance the β-diversity of different trophic levels, as well as the β-functionality of various ecosystem functions. We will develop a new statistical framework for BEF studies extending across scales and incorporating biodiversity measures from taxonomic to functional to phylogenetic diversity using Hill numbers. We will further expand the Hill number concept to multifunctionality allowing the decomposition of γ-multifunctionality into α- and β-components. Combining this analytic framework with our experimental data will allow us to test how an increase in between patch heterogeneity affects biodiversity and multifunctionality across spatial scales and trophic levels to help inform and improve forest resilience under climate change. Such an integrative concept for biodiversity and functionality, including spatial scales and multiple aspects of diversity and multifunctionality as well as physical and environmental structure in forests, will go far beyond the current widely applied approach in forestry to increase resilience of future forests through the manipulation of tree species composition.  相似文献   

3.
Ecosystems have a limited buffering capacity of multiple ecosystem functions against biodiversity loss (i.e. low multifunctional redundancy). We developed a novel theoretical approach to evaluate multifunctional redundancy in a microbial community using the microbial genome database (MBGD) for comparative analysis. In order to fully implement functional information, we defined orthologue richness in a community, each of which is a functionally conservative evolutionary unit in genomes, as an index of community multifunctionality (MF). We constructed a graph of expected orthologue richness in a community (MF) as a function of species richness (SR), fit the power function to SR (i.e. MF = cSRa), and interpreted the higher exponent a as the lower multifunctional redundancy. Through a microcosm experiment, we confirmed that MF defined by orthologue richness could predict the actual multiple functions. We simulated random and non-random community assemblages using full genomic data of 478 prokaryotic species in the MBGD, and determined that the exponent in microbial communities ranged from 0.55 to 0.75. This exponent range provided a quantitative estimate that a 6.6–8.9% loss limit in SR occurred in a microbial community for an MF reduction no greater than 5%, suggesting a non-negligible initial loss effect of microbial diversity on MF.  相似文献   

4.
The potential of biodiversity loss to impair the delivery of ecosystem services has motived ecologists to better understand the relationship between biodiversity and ecosystem functioning. Although increasing evidence underlines the collective contribution of different biodiversity components on the simultaneous performance of multiple functions (multifunctionality), we know little about the trade‐offs between individual diversity effects and the extent to which they determine multifunctionality differentially. Here, at a subcontinental scale of 62 dryland sites, we show in phototrophic microbiota of biological soil crusts (biocrusts) that, whereas richness alone is unable to guarantee the maxima of multifunctional performance, interspecies facilitation and compositional identity are particularly stronger but often neglected predictors. The inconsistent effects of different biodiversity components imply that soil multifunctionality can be lost despite certain species remaining present. Moreover, we reveal a significant empirical association between species functional importance and its topological feature in co‐occurrence networks, indicating a functional signal of species interaction. Nevertheless, abundant species tend to isolate and merely interact within small topological structures, but rare species were tightly connected in complicated network modules. Our findings suggest that abundant and rare species of soil phototrophs exhibit distinct functional relevance. These results give a comprehensive view of how soil constructive species drive multifunctionality in biocrusts and ultimately promote a deeper understanding of the consequences of biodiversity loss in real‐world ecosystems.  相似文献   

5.
Integrating knowledge of environmental degradation, biodiversity change, and ecosystem processes across large spatial scales remains a key challenge to illuminating the resilience of earth's systems. There is now a growing realization that the manner in which communities will respond to anthropogenic impacts will ultimately control the ecosystem consequences. Here, we examine the response of freshwater fishes and their nutrient excretion – a key ecosystem process that can control aquatic productivity – to human land development across the contiguous United States. By linking a continental‐scale dataset of 533 fish species from 8100 stream locations with species functional traits, nutrient excretion, and land remote sensing, we present four key findings. First, we provide the first geographic footprint of nutrient excretion by freshwater fishes across the United States and reveal distinct local‐ and continental‐scale heterogeneity in community excretion rates. Second, fish species exhibited substantial response diversity in their sensitivity to land development; for native species, the more tolerant species were also the species contributing greater ecosystem function in terms of nutrient excretion. Third, by modeling increased land‐use change and resultant shifts in fish community composition, land development is estimated to decrease fish nutrient excretion in the majority (63%) of ecoregions. Fourth, the loss of nutrient excretion would be 28% greater if biodiversity loss was random or 84% greater if there were no nonnative species. Thus, ecosystem processes are sensitive to increased anthropogenic degradation but biotic communities provide multiple pathways for resistance and this resistance varies across space.  相似文献   

6.
Most ecosystems provide multiple services, thus the impact of biodiversity losses on ecosystem functions may be considerably underestimated by studies that only address single functions. We propose a multivariate modelling framework for quantifying the relationship between biodiversity and multiple ecosystem functions (multifunctionality). Our framework consolidates the strengths of previous approaches to analysing ecosystem multifunctionality and contributes several advances. It simultaneously assesses the drivers of multifunctionality, such as species relative abundances, richness, evenness and other manipulated treatments. It also tests the relative importance of these drivers across functions, incorporates correlations among functions and identifies conditions where all functions perform well and where trade‐offs occur among functions. We illustrate our framework using data from three ecosystem functions (sown biomass, weed suppression and nitrogen yield) in a four‐species grassland experiment. We found high variability in performance across the functions in monocultures, but as community diversity increased, performance increased and variability across functions decreased.  相似文献   

7.
Biodiversity loss is occurring rapidly worldwide, yet it is uncertain whether few or many species are required to sustain ecosystem functioning in the face of environmental change. The importance of biodiversity might be enhanced when multiple ecosystem processes (termed multifunctionality) and environmental contexts are considered, yet no studies have quantified this explicitly to date. We measured five key processes and their combined multifunctionality at three temperatures (5, 10 and 15 °C) in freshwater aquaria containing different animal assemblages (1–4 benthic macroinvertebrate species). For single processes, biodiversity effects were weak and were best predicted by additive‐based models, i.e. polyculture performances represented the sum of their monoculture parts. There were, however, significant effects of biodiversity on multifunctionality at the low and the high (but not the intermediate) temperature. Variation in the contribution of species to processes across temperatures meant that greater biodiversity was required to sustain multifunctionality across different temperatures than was the case for single processes. This suggests that previous studies might have underestimated the importance of biodiversity in sustaining ecosystem functioning in a changing environment.  相似文献   

8.
Increasing attention has been paid to the relationship between biodiversity and ecosystem functioning (BEF) because of the rapid increase in species loss. However, over the past 20 years, most BEF studies only focused on the effect of species diversity on one or a few ecosystem functions, and only a few studies focused on ecosystem multifunctionality (i.e., the simultaneous provision of several ecosystem functions). Grassland ecosystems have important economic, environmental, and esthetic value; thus, this study focused on the heterogeneous microcommunities in grasslands under three management modes. The multifunctionality index (M‐index) was assessed at community and microcommunity scales, and the relationship between species diversity and multifunctionality was investigated. The communities were found to be respectively composed of one, three, and six microcommunities in grazing, clipping, and enclosure management, based on a two‐way indicator species analysis (TWINSPAN) and detrended correspondence analysis (DCA) for community structure. Biodiversity and soil indicators showed an apparent degradation of the grazing community, which had the worst M‐index. Clipping and enclosure communities showed no significant difference in biodiversity indices, soil variables, and M‐index; however, these indices were clearly different among microcommunities. Therefore, the microcommunity scale may be suitable to investigate the relationship between vegetation and multifunctionality in seminatural grassland ecosystems. Dominant species richness had more explanatory power for ecosystem multifunctionality than subdominant species richness, rare species richness, and the number of all species. Therefore, it is important to distinguish the role and rank of different species in the species richness–multifunctionality model; otherwise, the model might include redundant and unclear information. Communities with more codominant species whose distribution is also even might have better multifunctionality.  相似文献   

9.
《植物生态学报》2016,40(8):735
Aims Over the past twenty years, most biodiversity and ecosystem functioning (BEF) research has focused on the effects of species diversity on single or just a few ecosystem functions. However, ecosystems are primarily valued for their ability to maintain multiple functions and services simultaneously (i.e. multifunctionality here- after). This paper first introduced the constantly perfected concept of “multifunctionality”, and then tried to make some modifications to the current mainstream quantitative method in order to evaluate the multifunctionality of grassland communities with the management of clipping, enclosure and grazing in Inner Mongolia, investigating the relationship between the multifunctionality and species diversity. Methods In free grazing grassland, four sites were set and each site was divided into two parts to conduct enclosure and clipping management respectively. After seven years, 15 quadrats (1 m × 1 m) were established for each type of management in each site (total 60 quadrats for each type) using the regular arrangement method; as a control, we also established 20 quadrats (two sites) in grazing grassland. For each quadrat, we carried out plants census and collected soil mixture sample, measuring 16 soil variables, and then calculated the biodiversity indices and multifunctionality index (M-index) by means of factor analysis. Important findings The results showed that M-indexes by the two evaluation methods were strongly correlated at both quadrat and site scale, suggesting that our modified method was reliable. Over-grazed communities had the lowest biodiversity indices and their most soil indicators were also low, showing obvious degradation features. Enclosure and clipping communities (seven years) had higher biodiversity and better soil indicators. The rank of M-indexes was clipping community (0.2178) > enclosure community (0.0704) > grazing community (-0.8031). The vegetation was distributed mainly along the gradients of water and fertility. Among the biodiversity indices, evenness (Pielou) index and richness (Margelf) index were most strongly correlated with multifunctionality, and their explanatory power (R2) for M-index were higher at site scale (R2 = 0.5921, p = 0.0093; R2 = 0.7499, p = 0.0007) than at quadrat scale (R2 = 0.1871, p < 0.0001; R2 = 0.1601, p < 0.0001), indicating study scale played an important role in the determinants of multifunctionality. At both quadrat and site scales, M-indexes is a linear positive function with species evenness and a hump-shaped function of species richness. Therefore, in contrast to enclosure, clipping was more conducive to maintain the ecosystem multifunctionality in this region, and the ecosystem with moderate specie richness, where these species are evenly distributed might have better multifunctionality.  相似文献   

10.
随着全球变化对生物多样性的影响不断加剧, 生物多样性与生态系统功能之间相互关系(BEF)的研究显得极为重要。过去的20多年, BEF的研究大多集中在对物种多样性与单一或少数生态系统功能之间关系的探讨, 但生态系统最为重要的价值是同时维持多种服务和功能的能力, 基于此, 该文首次在国内引入近年来不断完善的生态系统多功能性(multifunctionality)的概念, 并对目前主流的评价方法进行了改进, 从而对内蒙古三种利用方式(刈割、围封、放牧)下的草地群落进行了多功能性评价, 并探讨了多功能性与物种多样性之间的关系。结果显示本研究改进的方法和目前主流方法评价得出的多功能性指数在样方和样地尺度上都有很高的相关性(R2 = 0.6956, p < 0.0001; R2 = 0.9231, p < 0.0001), 表明该文作者改进后的方法是可靠的。重度放牧的草地群落物种多样性水平最低, 绝大多数土壤功能指标较差, 表现出退化特征; 7年的围封和刈割群落均有较高的物种多样性水平和改善的土壤功能指标; 三者的多功能性指数为刈割(0.2178) >围封(0.0704) >放牧(-0.8031)。植被样方主要沿水肥梯度分布; 多样性指数中, 均匀度指数(Pielou index)和丰富度指数(Margelf index)对多功能性的影响作用最大, 均为样方尺度(R2 = 0.1871, p < 0.0001; R2 = 0.1601, p < 0.0001)小于样地尺度(R2 = 0.5921, p = 0.0093; R2 = 0.7499, p = 0.0007), 有尺度依赖性; 多功能性在样方和样地尺度上均与物种均匀度呈线性正相关关系, 而与物种丰富度呈单峰曲线关系。该文研究结果表明, 相对于重度放牧和围封, 刈割更有利于维持该地区生态系统的多功能性; 物种丰富度适中且物种分布均匀的生态系统可能有更好的多功能性。  相似文献   

11.
Aims Anthropogenic activities have drastically increased nutrient availability, resulting in declines in species richness in many plant communities. However, most previous studies have explored only species-loss patterns and mechanisms over small sampling areas, so their results might overestimate species loss at larger spatial scales. The aim of this research was to explore species diversity change patterns and species-loss rates at multiple scales in alpine meadow communities following nutrient enrichment. Specifically, we asked two closely related questions: (i) do changes in species diversity and species-loss patterns differ among spatial scales? and (ii) how does community compositional dissimilarity and species turnover change among spatial scale?  相似文献   

12.
The decomposition of litter and the supply of nutrients into and from the soil are two fundamental processes through which the above- and belowground world interact. Microbial biodiversity, and especially that of decomposers, plays a key role in these processes by helping litter decomposition. Yet the relative contribution of litter diversity and soil biodiversity in supporting multiple ecosystem services remains virtually unknown. Here we conducted a mesocosm experiment where leaf litter and soil biodiversity were manipulated to investigate their influence on plant productivity, litter decomposition, soil respiration, and enzymatic activity in the littersphere. We showed that both leaf litter diversity and soil microbial diversity (richness and community composition) independently contributed to explain multiple ecosystem functions. Fungal saprobes community composition was especially important for supporting ecosystem multifunctionality (EMF), plant production, litter decomposition, and activity of soil phosphatase when compared with bacteria or other fungal functional groups and litter species richness. Moreover, leaf litter diversity and soil microbial diversity exerted previously undescribed and significantly interactive effects on EMF and multiple individual ecosystem functions, such as litter decomposition and plant production. Together, our work provides experimental evidence supporting the independent and interactive roles of litter and belowground soil biodiversity to maintain ecosystem functions and multiple services.  相似文献   

13.
生物多样性常常和生态系统多功能性(生态系统同时提供多个生态系统功能的能力)正相关。然而,生物多样性与生态系统多功能性的关系是否依赖于生态系统功能的数目有诸多争议。其中,生物多样性对生态系统多功能性的影响或许不随生态系统功能数目的变化而变化,或者随生态系统功能数目的增多而增强。我们期望通过研究不同生态系统多功能性指数的统计原理来解决这些争议。 我们使用了模型模拟和一系列来自不同空间尺度(从局域到全球)和不同生物群系(温带和高寒草地、森林和干旱地)的经验数据。我们回顾了量化生态系统多功能性的三种方法,包括平均值法、加和法和阈值法。我们发现随着生态系统功能数目的增加,生物多样性与生态系统多功能性的关系要么不变,要么增强。这些结果可由平均和加和的多功能性指数的统计原理来解释。具体来讲,当利用生态系统功能的平均值计算多功能性指数时,由于多样性对多功能性的效应等于多样性对单个生态系统功能效应的平均值,所以不会随生态系统功能数目的变化而变化。同样的道理,当利用单个生态系统的加和值计算多功能性指数时,多样性的效应会随着生态系统功能数目的增加而增强。我们提出了一个改进的多功能性指数,将平均或加和多功能性指数转化为标准化的多功能性指数, 以便于对不同研究的结果进行比较。此外,我们提出了基于变量数值范围的标准化方法来解决阈值法的数学假象问题(多样性效应随生态系统功能数目的增加而增强)。我们的研究结果表明,量化多功能性指数的方法不同,结果也不同。因此,有必要加深对不同方法数理基础的理解。而标准化的多功能性指数为比较不同研究中的生物多样性与生态系统多功能性的关系提供了有效的方法。  相似文献   

14.
The role of habitat selection behaviour in the assembly of natural communities is an increasingly important theme in ecology. At the same time, ecologists and conservation biologists are keenly interested in scale and how processes at scales from local to regional interact to determine species distributions and patterns of biodiversity. How important is habitat selection in generating observed patterns of distribution and diversity at multiple spatial scales? In theory, habitat selection in response to interacting species can generate both positive and negative covariances among species distributions and create the potential to link processes of community assembly across multiple scales. Here I demonstrate that habitat selection by treefrogs in response to the distribution of fish predators functions at both the regional scale among localities and the local scale among patches within localities, implicating habitat selection as a critical link between local communities and the regional dynamics of metacommunities in complex landscapes.  相似文献   

15.
Human activities are causing a rapid loss of biodiversity, which impairs ecosystem functions and services. Therefore, understanding which processes shape how biodiversity is distributed along spatial and environmental gradients is a first step to guide conservation and management efforts. We aimed to determine the relative explanatory importance of biogeographic, environmental, landscape and spatial variables on assemblage dissimilarities and functional diversity of dung beetles along the Atlantic Forest–Pampa (i.e. forest–grassland) transition zone located in Southeast South America. We described each site according to their biogeographic position, environmental conditions, landscape features and spatial patterns. The compositional dissimilarity was partitioned into turnover and nestedness components of β‐diversity. Mantel tests and generalised dissimilarity models were used to relate β‐diversity and its components to biogeographic, environmental, landscape and spatial variables. Variation partitioning analysis was used to estimate the pure and shared variation in species composition and functional diversity explained by the four categories of predictors. Biome domain was the main factor causing dung beetle compositional dissimilarity, with a high species replacement between Atlantic Forest and Pampa. Biogeographic, environmental, landscape and spatial distances also affected the patterns of dung beetle dissimilarity and β‐diversity components. The shared effects of the four sets of predictors explained most of the variation in dung beetle composition. A similar response pattern was found for dung beetle functional diversity, which excluded biogeographic effects. Only the pure effects of environmental and spatial predictors were significant for species composition and functional diversity. Our results indicate that dung beetle species composition and functional diversity are jointly driven by environmental, landscape and spatial predictors with higher pure environmental and spatial effects. The forest–grassland transition zone promotes a strong species and trait replacement highly influenced both by environmental filtering and dispersal limitation.  相似文献   

16.
β‐diversity (variation in community composition) is a fundamental component of biodiversity, with implications for macroecology, community ecology and conservation. However, its scaling properties are poorly understood. Here, we systematically assessed the spatial scaling of β‐diversity using 12 empirical large‐scale datasets including different taxonomic groups, by examining two conceptual types of β‐diversity and explicitly considering the turnover and nestedness components. We found highly consistent patterns across datasets. Multiple‐site β‐diversity (i.e. variation across multiple sites) scaling curves were remarkably consistent, with β‐diversity decreasing with sampled area according to a power law. For pairwise dissimilarities, the rates of increase of dissimilarity with geographic distance remained largely constant across scales, while grain size (or scale level) had a stronger effect on overall dissimilarity. In both analyses, turnover was the main contributor to β‐diversity, following total β‐diversity patterns closely, while the nestedness component was largely insensitive to scale changes. Our results highlight the importance of integrating both inter‐ and intraspecific aggregation patterns across spatial scales, which underpin substantial differences in community structure from local to regional scales.  相似文献   

17.
Global change affects ecosystem functioning both directly by modifications in physicochemical processes, and indirectly, via changes in biotic metabolism and interactions. Unclear, however, is how multiple anthropogenic drivers affect different components of community structure and the performance of multiple ecosystem functions (ecosystem multifunctionality). We manipulated small natural freshwater ecosystems to investigate how warming and top predator loss affect seven ecosystem functions representing two major dimensions of ecosystem functioning, productivity and metabolism. We investigated their direct and indirect effects on community diversity and standing stock of multitrophic macro and microorganisms. Warming directly increased multifunctional ecosystem productivity and metabolism. In contrast, top predator loss indirectly affected multifunctional ecosystem productivity via changes in the diversity of detritivorous macroinvertebrates, but did not affect ecosystem metabolism. In addition to demonstrating how multiple anthropogenic drivers have different impacts, via different pathways, on ecosystem multifunctionality components, our work should further spur advances in predicting responses of ecosystems to multiple simultaneous environmental changes.  相似文献   

18.
1. The relationship between biodiversity and ecosystem functioning is typically positive but saturating, suggesting widespread functional redundancy within ecological communities. However, theory predicts that apparent redundancy can be reduced or removed when systems are perturbed, or when multifunctionality (the simultaneous delivery of multiple functions) is considered. 2. Manipulative experiments were used to test whether higher levels of dung beetle species richness enhanced individual functions and multifunctionality, and whether these relationships were influenced by perturbation (in this case, non‐target exposure to the veterinary anthelmintic ivermectin). The four ecosystem functions tested were dung removal, primary productivity, soil faunal feeding activity and reduction in soil bulk density. 3. For individual functions, perturbation had limited effects on functioning, with only dung removal significantly (negatively) affected. Species richness did not, on its own, explain significant variation in the delivery of individual functions. In the case of primary productivity, an interaction between richness and perturbation was found: species‐rich dung beetle assemblages enhanced forage growth in the unperturbed treatment, relative to the perturbed treatment. 4. Using a composite ‘multifunctionality index’ it was found that species‐rich dung beetle assemblages delivered marginally higher levels of multifunctionality in unperturbed conditions; however, this benefit was lost under perturbation. Using a relatively new and robust method of assessing diversity–multifunctionality relationships across a range of thresholds, no significant effect of species richness on multifunctionality was found.  相似文献   

19.
Foraging by consumers acts as a biotic filtering mechanism for biodiversity at the trophic level of resources. Variation in foraging behaviour has cascading effects on abundance, diversity, and functional trait composition of the community of resource species. Here we propose diversity at giving-up density (DivGUD), i.e. when foragers quit exploiting a patch, as a novel concept and simple measure quantifying cascading effects at multiple spatial scales. In experimental landscapes with an assemblage of plant seeds, patch residency of wild rodents decreased local α-DivGUD (via elevated mortality of species with large seeds) and regional γ-DivGUD, while dissimilarity among patches in a landscape (ß-DivGUD) increased. By linking theories of adaptive foraging behaviour with community ecology, DivGUD allows to investigate cascading indirect predation effects, e.g. the ecology-of-fear framework, feedbacks between functional trait composition of resource species and consumer communities, and effects of inter-individual differences among foragers on the biodiversity of resource communities.  相似文献   

20.
The mechanisms underpinning forest biodiversity‐ecosystem function relationships remain unresolved. Yet, in heterogeneous forests, ecosystem function of different strata could be associated with traits or evolutionary relationships differently. Here, we integrate phylogenies and traits to evaluate the effects of elevational diversity on above‐ground biomass across forest strata and spatial scales. Community‐weighted means of height and leaf phosphorous concentration and functional diversity in specific leaf area exhibited positive correlations with tree biomass, suggesting that both positive selection effects and complementarity occur. However, high shrub biomass is associated with greater dissimilarity in seed mass and multidimensional trait space, while species richness or phylogenetic diversity is the most important predictor for herbaceous biomass, indicating that species complementarity is especially important for understory function. The strength of diversity‐biomass relationships increases at larger spatial scales. We conclude that strata‐ and scale‐ dependent assessments of community structure and function are needed to fully understand how biodiversity influences ecosystem function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号