首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effective fire suppression in combination with intensive forestry has caused a large number of dead wood‐dependent (saproxylic) species to become threatened in Fennoscandia. In order to return the fire disturbance dynamics and to increase the amount of dead wood, restoration actions are urgently needed. We studied the effects of restoring young (under 30 years old) pine‐dominated (Pinus sylvestris L.) forest stands on saproxylic beetle assemblages in eastern Finland, focusing especially on rare, red‐listed, and pyrophilous (RRLP) species. Our experiment included a restoration treatment including two tree felling levels for fuel load (10 or 20 m3/ha) followed by burning, and an untreated control. We sampled beetles before restoration in 2005, during the year of restoration in 2006, and in two post‐treatment years in 2007 and 2011. Both restoration treatments increased the number of saproxylic and RRLP species. The species richness increased most in the year of restoration in 2006 and this trend continued in the following year 2007, but no differences in species assemblages were detected between the two fuel load levels. By 2011, however, the species richness and abundance had declined back to the pre‐treatment level. We suggest that restoration burning can also be directed to young forests where biodiversity values are initially low. On the basis of the observed decline in the species richness, we suggest that fire could be introduced in neighboring areas in approximately 5‐year intervals to maintain populations of the most demanding pyrophilous species .  相似文献   

2.
3.
Compared to agricultural land and spruce plantations, central European beech-oak forests are often relatively close to natural conditions. However, forest management may alter these conditions. In Steigerwald, southern Germany, a large beech-dominated forest area, three management intensities were applied during the past 30–70 years. Here, we examined the influence of management intensity on saproxylic beetles in >100-year old mature stands at 69 sampling plots in 2004. We sampled beetles using flight-window traps and time standard direct searches. The community structure based on presence/absence data changed remarkably along the gradient from unmanaged to low-intensity to high-intensity management, but these differences were not evident using abundance data from flight interception traps. Saproxylic species richness decreased in intensively managed forests. Elateridae and threatened species richness peaked in unmanaged forests and in forests under low-intensity management. Saproxylic species richness was dependent on certain micro-habitat factors. These factors were (1) the amount of dead wood for Elateridae, overall and threatened saproxylic beetle richness; (2) the amount of flowering plants for Cerambycidae; (3) the richness of wood-inhabiting fungi for Staphylinidae, Melandryidae and overall saproxylic beetle richness; and (4) the frequency of Fomes fomentarius for threatened species. Species richness was better explained by plot factors, such as dead wood or fungi, than by management intensity. These results suggest that the natural variation of dead wood niches (decay stages, snag sizes, tree cavities and wood-inhabiting fungi species) must be maintained to efficiently conserve the whole saproxylic beetle fauna of beech forests. Also, intensive management may alter the specialised saproxylic beetle community even if the initial tree-species composition is maintained, which was the case in our study. For monitoring the ecological sustainability of forest management we must focus on threatened species. If structures alone are sampled then the amount of dead wood is the best indicator for a rich saproxylic beetle fauna.  相似文献   

4.
Modern forestry management has reduced the amount of dead wood in forest ecosystems and this has become a serious threat to flora and fauna. Efforts are therefore being made to reverse this trend but one problem is that we still lack detailed knowledge regarding the substrate requirements of many saproxylic species. In a field experiment, conducted in three forest types (forest reserve, mature managed forest and clear-cut), we evaluated the value, from a conservation perspective, of different substrate types (logs, snags and tops) of Norway Spruce, Picea abies, and if the quality of spruce logs as saproxylic habitats can be improved by simple log treatments (scorching and shading). We collected 9982 individuals representing 262 saproxylic beetle species in window traps. Both substrate type and, to a lesser extent, log treatment had a significant effect on the abundance and species richness of saproxylic beetles attracted to the different dead wood substrates. However, more importantly, the composition of the beetle assemblages differed significantly between both substrates and log treatments. Snags, logs and tops all attracted significantly different beetle assemblages and scorched logs differed from untreated control logs. Sixteen red listed species were trapped, with the highest number (11 species) being found on scorched logs. We found strong evidence that some species preferred a specific substrate type, mainly logs, in some cases treated logs (scorched or shaded), but not snags, the substrate commonly provided for conservation purposes on e.g. clear-cuts. This stresses the importance of conducting forestry in such a way that a multitude of both forest habitats and dead wood substrates are available continuously in the forest landscape to maintain biodiversity.  相似文献   

5.
Global warming and land‐use change are expected to be additive threats to global diversity, to which insects contribute the highest proportion. Insects are strongly influenced by temperature but also require specific habitat resources, and thus interaction between the two factors is likely. We selected saproxylic beetles as a model group because their life cycle depends on dead wood, which is highly threatened by land use. We tested the extent to which higher temperatures compensate for the negative effects of low amounts of dead wood on saproxylic beetle species richness (Temperature–Dead wood compensation hypothesis) on both a macroclimate and a topoclimate scale (north‐ and south‐facing slopes). We analyzed 1404 flight‐interception trap catches across Europe to test for interaction effects of temperature and dead‐wood amount on species richness. To experimentally test our findings from the activity trap data, we additionally reared beetles from 80 bundles of dead wood initially exposed at high and low elevations. At the topoclimate scale, we analyzed trap catches and reared beetles from dead wood exposed in 20 forest stands on south‐facing and north‐facing slopes in one region. On the macroscale, both temperature and dead‐wood amount positively affected total and threatened species richness independently, but their interaction was significantly negative, indicating compensation. On both scales and irrespective of the method, species richness decreased with temperature decline. Our observation that increasing temperature compensates for lower amounts of dead wood has two important implications. First, managers of production forests should adapt their dead‐wood enrichment strategy to site‐specific temperature conditions. Second, an increase in temperature will compensate at least partially for poor habitat conditions in production forests. Such a perspective contrasts the general assumption of reinforcing impacts of global warming and habitat loss on biodiversity, but it is corroborated by recent range expansions of threatened beetle species.  相似文献   

6.
Dead wood is a habitat for many insects and other small animals, some of which may be rare or endangered and in need of effective protection. In this paper, saproxylic beetle assemblages associated with different host trees in the subtropical forests in southwestern China were investigated. A total of 277 species (1 439 specimens) in 36 beetle families were collected from 117 dead wood samples, of which 101 samples were identified and respectively belonged to 12 tree genera. The number of saproxylic beetle species varied greatly among logs of different tree genera, with the highest diversity on logs of Juglans. Generally, broad‐leaved trees had a higher richness and abundance of saproxylic species than coniferous trees. Cluster analysis revealed that assemblages from broad‐leaved tree genera were generally similar (except for Betula) and assemblages from coniferous trees formed another distinct cluster. The subsequent indicator analysis proposed that there are different characteristic species for different cluster groups of host tree genera. In our study, log diameter has no positive influence on beetle species density. Conversely, comparisons of individual‐based rarefaction curves suggested that beetle species richness was highest in the small diameter class both in coniferous and broad‐leaved tree genera. With increased wood decay, proportion of habitat specialists (saproxylic beetles living on one tree genus) decreased, whereas proportion of habitat generalists (living on more than three tree genera) increased. The beetle species density was found to be higher in early stages, and decreased in later stages as well. A negative influence of altitude on saproxylic beetle species richness and abundance was detected. It was indicated that different tree genera and altitudes possibly display cross effects in modulating the altitudinal distribution and host preference of the beetles.  相似文献   

7.
This study investigates the relationship between the abundance of wood-rotting fungus suggested as 'continuity indicator species' and environmental variables for the assemblage of saproxylic (wood-living) beetles associated with Fomitopsis pinicola fruiting bodies in a mature spruce forest in southeastern Norway. The presence of species thought to indicate continuity in old growth is one of the criteria used when finding and delineating small protected areas ('woodland key habitats') in Scandinavian forestry. Although it is clear that remnants of old-growth forest are important for many taxa, documentation as to which entities or species the indicator species indeed indicate is scarce. If stands with a continuous and unbroken input of dead wood have a unique assemblage of wood-rotting fungi, it seems relevant to ask if these stands also have a unique assemblage of rare saproxylic beetles. I find that the indicator species exhibit no significant correlations with beetle species richness or with the presence of red-listed saproxylic beetles as a group. The different characteristics of dead wood conditions are the most important environmental variables that explain both the species richness and the presence of red-listed beetles. Single-species analyses reveal contrasting relationships. The red-listed beetle Atomaria alpina shows a significant and positive association to the abundance of indicator species. Contrary, a group of three red-listed species with similar ecology in the family Cisidae exhibits a significant and negative association to indicator species abundance. This indicates that important patterns are concealed when considering general measures such as overall presence of red-listed beetles. Single-species studies are necessary in order to correctly understand how rare beetles respond to forestry activities and to develop a policy that can secure their continuing existence in the boreal forest.  相似文献   

8.
The young successional stages of boreal forests are an important habitat for many saproxylic species. These habitats are formed by disturbances such as forest fires and they are characterized by large volumes of dead wood and sun-exposed conditions. Today, young successional stages of natural origin are very rare in Fennoscandia and there is need for restoration. We constructed a large-scale field experiment in which we studied the effects of two restoration practices on beetle diversity: controlled burning and partial harvesting with creating different volumes of dead wood. We sampled beetles with flight-intercept traps recording a total of 56,031 individuals and 755 species. The species richness and abundance of both saproxylic and non-saproxylic beetles were increased by burning and harvesting but the volume of dead wood created on harvested sites had no short-term effect on species richness or abundance. Rare species, especially saproxylic ones, preferred burned sites and a similar trend was observed among red-listed and pyrophilous species. Burning and harvesting also resulted in different species assemblages and there were some additional differences according to the volume of dead wood. We conclude that fire can be successfully used in restoration of managed boreal forests to increase species diversity and to facilitate the recovery of declined species. However, long-term monitoring is needed to clarify the effects of the restoration practices, in particular those of creating dead wood without using fire.  相似文献   

9.
Inter‐specific interactions are important drivers and maintainers of biodiversity. Compared to trophic and competitive interactions, the role of non‐trophic facilitation among species has received less attention. Cavity‐nesting bees nest in old beetle borings in dead wood, with restricted diameters corresponding to the body size of the bee species. The aim of this study was to test the hypothesis that the functional diversity of cavity‐producing wood boring beetles ‐ in terms of cavity diameters ‐ drives the size diversity of cavity‐nesting bees. The invertebrate communities were sampled in 30 sites, located in forested landscapes along an elevational gradient. We regressed the species richness and abundance of cavity nesting bees against the species richness and abundance of wood boring beetles, non‐wood boring beetles and elevation. The proportion of cavity nesting bees in bee species assemblage was regressed against the species richness and abundance of wood boring beetles. We also tested the relationships between the size diversity of cavity nesting bees and wood boring beetles. The species richness and abundance of cavity nesting bees increased with the species richness and abundance of wood boring beetles. No such relationship was found for non‐wood boring beetles. The abundance of wood boring beetles was also related to an increased proportion of cavity nesting bee individuals. Moreover, the size diversity of cavity‐nesting bees increased with the functional diversity of wood boring beetles. Specifically, the mean and dispersion of bee body sizes increased with the functional dispersion of large wood boring beetles. The positive relationships between cavity producing bees and cavity nesting bees suggest that non‐trophic facilitative interactions between species assemblages play important roles in organizing bee species assemblages. Considering a community‐wide approach may therefore be required if we are to successfully understand and conserve wild bee species assemblages in forested landscapes.  相似文献   

10.
Abstract

The diversity of saproxylic bryophyte species in beech forest stands from the wide region of the central Balkans (i.e. Serbia and Montenegro) was studied, and this study is the first of such a type in SE Europe. Comparison of preserved old‐growth and managed forests were made. Bryophyte species diversity is higher in primeval forest stands where the spectra of dead wood in various decaying stages of its dynamics are present. The ecological group of epixylic specialists is predominant among the bryophytes recorded. Threatened bryophyte species occur in old‐growth beech stands. The dead wood as habitat together with some other factors are extremely important for the surviving of epixylic bryophyte; so these species can be used as bioindicator bryophyte species of old‐growth or managed and structured forest ecosystems.  相似文献   

11.
Restoration of habitats is critically important in preventing full realization of the extinction debt owed as a result of anthropogenic habitat destruction. Although much emphasis has been placed on macrohabitats, suitable microhabitats are also vital for the survival of most species. The aim of this large-scale field experiment was to evaluate the relative importance of manipulated microhabitats, i.e., dead wood substrates of spruce (snags, and logs that were burned, inoculated with wood fungi or shaded) and macrohabitats, i.e., stand types (clear-cuts, mature managed forests, and forest reserves) for species richness, abundance and assemblage composition of all saproxylic and red-listed saproxylic beetles. Beetles were collected in emergence traps in 30 forest stands in 2001, 2003, 2004 and 2006. More individuals emerged from snags and untreated logs than from burned and shaded logs, but species richness did not differ among substrates. Assemblage composition differed among substrates for both all saproxylics and red-listed saproxylic species, mainly attributed to different assemblage composition on snags. This suggests that the practise of leaving snags for conservation purposes should be complemented with log supplementation. Clear-cuts supported fewer species and different assemblages from mature managed forests and reserves. Neither abundance, nor species richness or assemblage composition differed between reserves and mature managed forests. This suggests that managed stands subjected to selective cutting, not clear-felling, maintain sufficient old growth characteristics and continuity to maintain more or less intact assemblages of saproxylic beetles. Thus, alternative management methods, e.g., continuity forestry should be considered for some of these stands to maintain continuity and conservation values. Furthermore, the significantly higher estimated abundance per ha of red-listed beetles in reserves underlines the importance of reserves for maintaining viable populations of rare red-listed species and as source areas for saproxylic species in boreal forest landscapes.  相似文献   

12.
1 Subsequent to the diversity of saproxylic beetles being proposed as a management tool in forestry, more explicit knowledge about the efficiency and selective properties of beetle sampling methods is needed.
2 We compared saproxylic beetle assemblages caught by alcohol-baited or unbaited window traps in different forest contexts. Considering that trap attractiveness depends on kairomone concentrations, we appraised whether the trap efficiency was influenced by trap environment (openness and local supply of fresh dead wood).
3 Saproxylic beetles were sampled using 48 cross-vane window flight traps, arranged in paired designs (alcohol-baited/unbaited), in eight ancient and eight recent gaps (open stands), and eight closed-canopy control stands in an upland beech forest in the French Pyrenees.
4 Baited traps were more efficient than unbaited traps in terms of abundance and richness in our deciduous forests. The ethanol lure did not have any repellent effect on the individual response of saproxylic taxa.
5 The influence of local environmental conditions on trap attractiveness was observed. Openness had a significant moderate effect on species richness. Trap attractiveness was slightly reduced in the alcohol-saturated environment of recent gaps probably due to a disruption by local fresh dead-wood concentrations of the kairomonal response of saproxylic beetles to baited traps ('alcohol disruption').
6 Because the ethanol lure enhanced the probability of species detection, it may be useful in early-warning surveillance, monitoring and control of wood borers, despite slight influences of local conditions on baited trap efficiency.  相似文献   

13.
The use of saproxylic beetle community as a metric to evaluate nature conservation measures in forests requires efficient methods. We first compare traditional bark sieving to a potential improvement (extracting beetles from whole bark with Tullgren funnels) to determine the most efficient. Secondly we compare this most efficient bark sampling to eclector and window traps. At the species, family, and functional group levels, we consider species richness, abundance and practical aspects. Traditional bark sieving missed >50% of the individual beetles compared to whole bark sampling so we recommend the latter. Window traps caught large numbers of mobile saproxylic beetles, but a high proportion of non-saproxylics results in high sorting cost; bark sampling and eclector traps had a high proportion of saproxylics and obligate saproxylics. Compared to bark sampling, eclector traps are non-destructive, and monitor the whole saproxylic assemblage (i.e. also beetles inside the wood). Overall, window traps are useful because they capture saproxylic beetles attracted to dead wood and sample the local species pool, whereas eclector traps capture the saproxylics that actually emerge from a particular piece of dead wood, and thus are suited to detailed studies. Overall, we suggest that a combination of these two best methods is highly complementary.  相似文献   

14.
Although the forests of the southeastern United States are among the most productive and diverse in North America, information needed to develop conservation guidelines for the saproxylic (i.e., dependent on dead wood) fauna endemic to the region is lacking. Particularly little is known about the habitat associations and requirements of saproxylic parasitoids even though these organisms may be even more vulnerable than their hosts. We sampled parasitoids emerging from dead wood taken from two forest types (an upland pine-dominated forest and a lowland hardwood-dominated forest), three tree species (Liquidambar styraciflua L., Pinus taeda L., and Quercus nigra L.) and two wood postures (standing dead trees (i.e., snags) and fallen logs) in South Carolina. Parasitoid abundance did not differ between forest types or among tree species, but did differ between wood postures, being higher in snags than logs. This difference may have been due to the logs being in contact with the ground or surrounding vegetation and therefore less accessible to parasitoids. Parasitoid abundance and density decreased with height on both snags and logs. Species richness did not differ between forest types, among tree species or between wood postures. According to analysis of similarities, parasitoid communities did not differ between forest types, but did differ among tree species. The wasp communities associated with the different tree species and posture combinations were distinct. In addition, communities associated with the upper boles and crowns of snags were distinct from those occurring lower on snags. These results emphasize the importance of maintaining tree diversity in managed forests as well as retaining or creating entire snags at the time of harvest.  相似文献   

15.
Saproxylic beetles may act as bio-indicators of high-quality mature woodlands, and their conservation is strongly linked to the quality and quantity of deadwood in a biotope. We tested the effect of deadwood accumulation and habitat variables on saproxylic species richness by investigating six sampling sites under different deadwood management practices that belong to both alluvial and riparian mixed forests of the Po plain, Italy. We sampled 43 obligate saproxylic species. The main factor predicting saproxylic species richness was the amount of deadwood measured by both log diameter and volume. We found a threshold of 0.22 m diameter (confidence interval CI 0.18–0.37 m) and 32.04 m3/ha volume (CI 16.09–64.09 m3/ha) below which saproxylic beetle richness would be significantly reduced and a threshold of 35 m3/ha dead wood volume (CI 33–40 m3/ha) over which species richness increases by <5 %. The other deadwood and environmental components influenced saproxylic beetle richness to a lesser extent; some of them, however, should still be considered for proper management. Forest structure variables describing forest density such as large trees and basal areas have a negative effect on species richness. According to the results of our study, stumps and advanced decaying class are positively correlated, while small logs are negatively correlated to species richness. Thus, in extensively managed forests, the regular cutting of trees should be implemented to create artificial stumps, in order to assure a continuity of deadwood and, in the meantime, increase the number and width of openings in the forest. Moreover, prolonging rotation times can assure the presence of deadwood at intermediate/later stages of decay.  相似文献   

16.
Dead wood is a key substrate for forest biodiversity, hosting a rich and often threatened biodiversity of wood-living species. However, the relationship between the occurrence of dead wood and associated species is modified by several environmental factors. Here we review the present state of knowledge on how dead wood on different spatial and temporal scales affects saproxylic biodiversity. We searched for peer-reviewed studies on saproxylic species that compared dead wood distribution on at least two spatial or temporal scales. We scanned close to 300 articles, of which 34 fit our criteria. 20 studies were directed towards the current amount of dead wood at different scale levels and how this relates to the abundance or occurrence of saproxylic species, embracing scales from 10 m to 10 km. 14 studies compared time-lagged effects of dead wood, covering time-lags from 25 years to more than 200 years. The reviewed articles focused mainly on European forest and addressed invertebrates (mostly beetles), alone or in combination with fungi (27 articles), fungi (six articles), or lichens (one article). Although the significance of dead wood for forest biodiversity is firmly established, the reviewed studies show that we still have limited knowledge of the relationship between saproxylic biodiversity and spatial and temporal scales. Based on the reviewed studies, we conclude that there is large variation in response to spatial and temporal dead wood patterns between different taxa and sub-groups. Still, several of the reviewed papers indicate that time-lagged effects deserve more attention, especially on a landscape scale and for specialized or red-listed species. Further work is required before firm management recommendations can be suggested.  相似文献   

17.
Karin Schiegg 《Ecography》2000,23(5):579-587
Saproxylic beetles have been shown to be vulnerable to within-forest fragmentation expressed as large distances between single dead wood pieces (low spatial connectivity of dead wood). From samples of a two-year study of saproxylic beetles, species that were characteristic of sites with high dead wood connectivity were identified by Canonical Correspondence Analysis, the method of Dufrêne and Legendre (IndVal) and by considering the species occurring exclusively in sites with high dead wood connectivity. These species differed mainly from the other species by their high habitat specificity. Hence, there arc species-specific responses of saproxylic beetles to the spatial arrangement of dead wood. High dead wood connectivity must be achieved in managed forests to sustain species which are particularly vulnerable to fragmentation.  相似文献   

18.
Azeria ET  Ibarzabal J  Hébert C 《Oecologia》2012,168(4):1123-1135
It is often suggested that habitat attributes and interspecific interactions can cause non-random species co-occurrence patterns, but quantifying their contributions can be difficult. Null models that systematically exclude and include habitat effects can give information on the contribution of these factors to community assembly. In the boreal forest, saproxylic beetles are known to be attracted to recently burned forests where they breed in dead and dying trees. We examined whether species co-occurrences of saproxylic beetles that develop in, and emerge from, boles of recently burned trees show non-random patterns. We also estimated the extent to which both the post-fire habitat attributes and interspecific interactions among beetles contribute to such patterns. We sampled tree boles encompassing key attributes (tree species, tree size/dbh and burn severity) that are thought to characterize species–habitat associations of saproxylic beetles, a proposition that we tested using indicator species analysis. Two null models with no habitat constraints (“unconstrained”) indicated that a total of 29.4% of the species pairs tested had significant co-occurrence patterns. Habitat-constrained null models indicated that most of the detected species aggregations (72%) and segregations (59%) can be explained by shared and distinct species–habitat relationships, respectively. The assembly pattern was also driven by interspecific interactions, of which some were modulated by habitat; for example, predator and prey species tended to co-occur in large-sized trees (a proxy of available bark/wood food resource primarily for the prey). In addition, some species segregation suggesting antagonistic, competitive, or prey–predator interactions were evident after accounting for the species’ affinities for the same tree species. Overall, our results suggest that an intimate link between habitat and interspecific interactions can have important roles for community assembly of saproxylic assemblages even following disturbance by fire. We also show that a systematic application of null models can offer insight into the mechanisms behind the assembly of ecological communities.  相似文献   

19.
To explore how environmental variability may create non‐random community structure, we simulated the assembly of model communities under varying levels of environmental variability. We assembled communities by creating a large pool of randomly constructed species, and then added species from this pool sequentially, allowing extinctions of invading and resident species to occur until the community became saturated. Because much current research on community structure focuses on single trophic levels, we constructed species pools consisting only of competitors. To compare with more realistic communities, we also created species pools with multiple trophic levels. For both types of communities, following assembly we calculated a variety of metrics of community structure, and five measures of community stability. Communities assembled under high environmental variability had fewer species, fewer and weaker interactions among species, and greater evenness in abundance of persisting species. For single trophic‐level communities, community size was dictated primarily by competitive exclusion. In contrast, for multiple trophic‐level communities, community size was increasingly limited by dynamical instabilities as environmental variability increased. Differences in community structure resulting from assembly under high environmental variability led to differences in community stability. According to two measures of stability related to population variability – the characteristic return rate to equilibrium and the coefficient of variation in individual species densities – stability increased for communities assembled under high environmental variability. In contrast, three additional measures of stability that are not directly related to population variability showed a variety of patterns, either increasing, decreasing, or remaining constant. Thus, communities assembled in highly variable environments are not necessarily generically more stable. Our results demonstrate that environmental variability can structure communities and affect their stability properties in non‐trivial ways. Thus, when making predictions about the response of communities to future extinctions or environmental degradation, account should be given to the forces responsible for community structure.  相似文献   

20.
The diversity in different groups of obligate saproxylic beetles was related to ecological variables at three levels of spatial scale in mature spruce-dominated forest. The variables were connected to: (i) decaying wood, (ii) wood-inhabiting fungi, (iii) the level of disturbance, (iv) landscape ecology, and (v) vegetational structure. Several strong relationships were found at medium (1 km2) and large scales (4 km2), while only weak relationships were found at a small scale (0.16 ha; 1 ha=104 m2). This may be explained by the local variations in habitat parameters and the high mobilities of many beetle species. Factors connected to decaying wood and wood-inhabiting fungi were clearly the most important factors at all scale levels. In particular, the variables diversity of dead tree parts, number of dead trees of large diameter and number of polypore fungi species increased the species richness of many groups and increased the abundance of many species. Eight species were absent below a certain density of decaying wood per 1 or 4 km2. Former extensive cutting was a negative factor at large scale, probably because of decreasing recolonization with increasing distance to the source habitats. Thinning reduced the diversity of species associated with birch. The development of guidelines favouring the diversity of saproxylic beetles are discussed below.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号