首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
INO80 chromatin remodeling complexes regulate nucleosome dynamics and DNA accessibility by catalyzing ATP-dependent nucleosome remodeling. Human INO80 complexes consist of 14 protein subunits including Ino80, a SNF2-like ATPase, which serves both as the catalytic subunit and the scaffold for assembly of the complexes. Functions of the other subunits and the mechanisms by which they contribute to the INO80 complex''s chromatin remodeling activity remain poorly understood, in part due to the challenge of generating INO80 subassemblies in human cells or heterologous expression systems. This JOVE protocol describes a procedure that allows purification of human INO80 chromatin remodeling subcomplexes that are lacking a subunit or a subset of subunits. N-terminally FLAG epitope tagged Ino80 cDNA are stably introduced into human embryonic kidney (HEK) 293 cell lines using Flp-mediated recombination. In the event that a subset of subunits of the INO80 complex is to be deleted, one expresses instead mutant Ino80 proteins that lack the platform needed for assembly of those subunits. In the event an individual subunit is to be depleted, one transfects siRNAs targeting this subunit into an HEK 293 cell line stably expressing FLAG tagged Ino80 ATPase. Nuclear extracts are prepared, and FLAG immunoprecipitation is performed to enrich protein fractions containing Ino80 derivatives. The compositions of purified INO80 subcomplexes can then be analyzed using methods such as immunoblotting, silver staining, and mass spectrometry. The INO80 and INO80 subcomplexes generated according to this protocol can be further analyzed using various biochemical assays, which are described in the accompanying JOVE protocol. The methods described here can be adapted for studies of the structural and functional properties of any mammalian multi-subunit chromatin remodeling and modifying complexes.  相似文献   

2.
染色质重塑复合体(chromatin remodeling complexes)通过具有ATPase活性的亚基水解ATP释放能量,通过改变核小体"构象"(包括核小体重定位、核小体滑动和核小体替换等)而改变DNA的"可及性"(accessibility),进而影响特定的生理、生化过程。染色质重塑复合体最早在酵母中发现,生化分析表明其至少含有13个亚基。目前植物染色质重塑复合体的组成还未完全解析,但通过对其酵母同源亚基(染色质重塑因子)的研究可从侧面探究植物染色质重塑复合体的功能。同时,还着重讨论了近年来在植物染色质重塑因子研究上取得的结果,以期为植物染色质重塑的作用机制提供启示。  相似文献   

3.
王蕊  曾宪录 《遗传》2010,32(4):301-306
染色质高度紧密的折叠阻止了转录因子和辅因子与DNA的结合, 因而通过染色质重塑以解除这样的抑制环境, 对于转录活动的正常进行是至关重要的。目前认为, 染色质重塑至少是通过两种机制来完成的, 一种是通过ATP依赖的染色质改构复合物, 另一种是通过对组蛋白尾部进行共价修饰的组蛋白修饰酶复合物。文章结合近年来的研究进展, 对前者进行染色质重塑的机制及两者在基因转录调控过程中如何相互协作等进行了论述。  相似文献   

4.
Chromatin structure and dynamics: functional implications   总被引:4,自引:0,他引:4  
  相似文献   

5.
6.
7.
ATP-dependent chromatin remodeling activities function to manipulate chromatin structure during gene regulation. One of the ways in which they do this is by altering the positions of nucleosomes along DNA. Here we provide support for the ability of these complexes to move nucleosomes into positions in which DNA is unraveled from one edge. This is expected to result in the loss of histone-DNA contacts that are important for retention of one H2A/H2B dimer within the nucleosome. Consistent with this we find that several chromatin remodeling complexes are capable of catalyzing the exchange of H2A/H2B dimers between chromatin fragments in an ATP-dependent reaction. This provides eukaryotes with additional means by which they may manipulate chromatin structure.  相似文献   

8.
9.
ATP-dependent chromatin remodeling is one of the central processes responsible for imparting fluidity to chromatin and thus regulating DNA transactions. Although knowledge on this process is accumulating rapidly, the basic mechanism (or mechanisms) by which the remodeling complexes alter the structure of a nucleosome is not yet understood. Structural information on these macromolecular machines should aid in interpreting the biochemical and genetic data; to this end, we have determined the structure of the human PBAF ATP-dependent chromatin-remodeling complex preserved in negative stain by electron microscopy and have mapped the nucleosome binding site using two-dimensional (2D) image analysis. PBAF has an overall C-shaped architecture--with a larger density to which two smaller knobs are attached--surrounding a central cavity; one of these knobs appears to be flexible and occupies different positions in each of the structures determined. The 2D analysis of PBAF:nucleosome complexes indicates that the nucleosome binds in the central cavity.  相似文献   

10.
11.
12.
Fazzio TG  Tsukiyama T 《Molecular cell》2003,12(5):1333-1340
Members of the ISWI family of chromatin remodeling factors exhibit ATP-dependent nucleosome sliding, loading, and spacing activities in vitro. However, it is unclear which of these activities are utilized by ISWI complexes to remodel chromatin in vivo. We therefore sought to identify the mechanisms of chromatin remodeling by Saccharomyces cerevisiae Isw2 complex at its known sites of action in vivo. To address this question, we developed a method of identifying intermediates of the Isw2-dependent chromatin remodeling reaction as it proceeded. We show that Isw2 complex catalyzes nucleosome sliding at two different classes of target genes in vivo, in each case sliding nucleosomes closer to the promoter regions. In contrast to its biochemical activities in vitro, nucleosome sliding by Isw2 complex in vivo is unidirectional and localized to a few nucleosomes at each site, suggesting that Isw2 activity is constrained by cellular factors.  相似文献   

13.
Protein complexes of the SWI/SNF family remodel nucleosome structure in an ATP-dependent manner. Each complex contains between 8 and 15 subunits, several of which are highly conserved between yeast, Drosophila, and humans. We have reconstituted an ATP-dependent chromatin remodeling complex using a subset of conserved subunits. Unexpectedly, both BRG1 and hBRM, the ATPase subunits of human SWI/SNF complexes, are capable of remodeling mono-nucleosomes and nucleosomal arrays as purified proteins. The addition of INI1, BAF155, and BAF170 to BRG1 increases remodeling activity to a level comparable to that of the whole hSWI/SNF complex. These data define the functional core of the hSWI/SNF complex.  相似文献   

14.
《Epigenetics》2013,8(4):282-286
A key feature of ATP-dependent chromatin remodeling complexes is how they control the ability of the complex to translocate along DNA within the context of a nucleosome. Although these complexes generally initiate DNA translocation near the dyad axis of the nucleosome, the progression and eventual termination is regulated in quite distinct ways. The best studies examples of these are the ISWI type which has strong extranucleosomal DNA dependent activity or the SWI/SNF type which has no linker DNA requirement. Recent data provide more insights into the mechanism of regulation of DNA translocation by the ISWI type complexes and how the structure of the ISWI-nucleosome complex changes during chromatin remodeling.  相似文献   

15.
16.
The ATPase ISWI is a subunit of several distinct nucleosome remodeling complexes that increase the accessibility of DNA in chromatin. We found that the isolated ISWI protein itself was able to carry out nucleosome remodeling, nucleosome rearrangement, and chromatin assembly reactions. The ATPase activity of ISWI was stimulated by nucleosomes but not by free DNA or free histones, indicating that ISWI recognizes a specific structural feature of nucleosomes. Nucleosome remodeling, therefore, does not require a functional interaction between ISWI and the other subunits of ISWI complexes. The role of proteins associated with ISWI may be to regulate the activity of the remodeling engine or to define the physiological context within which a nucleosome remodeling reaction occurs.  相似文献   

17.
18.
19.
ATP-dependent chromatin remodeling factors have been implicated in nuclear processes involving DNA. Here we report partial purification and characterization of an ATP-dependent chromatin remodeling activity from chicken liver. Nuclear extract from chicken liver was fractionated chromatographically to enrich proteins immunoreacting to antibodies against components of human SWI/SNF, namely BRG1, BAF170, BAF155, and BAF57. Immunoreactivity to these antibodies elutes with a mass of about 2MDa on Sepharose CL-6B gel filtration, suggesting that they constitute a SWI/SNF-like complex (SLC). The SLC displays three chromatin-remodeling activities, viz. nucleosome disruption, octamer transfer, and nucleosome sliding (octamer transfer in cis). We further show that components of SLC, as revealed by immunoreactivity to the above antibodies, display a dynamic nucleocytoplasmic distribution and colocalize with RNA polymerase II in the liver nuclei. This report contributes to the understanding of phylogenetic generality of chromatin remodeling factors in eukaryotes.  相似文献   

20.
Although mutations or deletions of chromodomain helicase DNA-binding protein 5 (CHD5) have been linked to cancer and implicate CHD5 in tumor suppression, the ATP-dependent activity of CHD5 is currently unknown. In this study, we discovered that CHD5 is a chromatin remodeling factor with a unique enzymatic activity. CHD5 can expose nucleosomal DNA at one or two discrete positions in the nucleosome. The exposure of the nucleosomal DNA by CHD5 is dependent on ATP hydrolysis, but continued ATP hydrolysis is not required to maintain the nucleosomes in their remodeled state. The activity of CHD5 is distinct from other related chromatin remodeling ATPases, such as ACF and BRG1, and does not lead to complete disruption or destabilization of the nucleosome. Rather, CHD5 likely initiates remodeling in a manner similar to that of other remodeling factors but does not significantly reposition the nucleosome. While the related factor CHD4 shows strong ATPase activity, it does not unwrap nucleosomes as efficiently as CHD5. Our findings add to the growing evidence that chromatin remodeling ATPases have diverse roles in modulating chromatin structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号