共查询到20条相似文献,搜索用时 0 毫秒
1.
Spatial resource partitioning between species via differences in rooting depth is one of the main explanations for the positive biodiversity–productivity relationship. However, evidence for the importance of this mechanism is limited. This may be due to the community scale at which these interactions are often investigated. Community measures represent net outcomes of species interactions and may obscure the mechanisms underlying belowground interactions. Here, we assess the performance of ~1700 individual plants and their heterospecific neighbours over three growing seasons in experimental grassland plots containing one, four or sixteen different plant species and tested whether their performance in mixtures compared to monocultures was related to their own rooting depth versus the rooting depth of their heterospecific neighbours. Overall, individuals of deep-rooting species performed better in mixtures and this effect significantly increased when surrounded by more shallow-rooting species. This effect was not apparent for the shallow rooting species. Together, including both deep and shallow rooting species increased mixture performance. Our results show that taking the perspective of the individual rather than the community can elucidate the interactions between species that contribute to positive biodiversity effects, emphasizing the need for studies at different scales to disentangle the myriad interactions that take place in diverse communities. 相似文献
2.
小麦根系特征对干旱胁迫的响应 总被引:2,自引:0,他引:2
干旱胁迫时, 小麦(Triticum aestivum)根系率先产生应激响应, 同时向地上部发出信号, 诱导地上部发生生理反应, 从而提高植株抗旱能力。根系构型包括平面几何性状和立体几何结构(即拓扑构型), 具有遗传稳定性和可塑性。干旱胁迫影响根系理化特性, 如根源化学信号、根系细胞酶类和根系渗透作用的响应。根系通过调整其解剖学结构和水分吸收动力等来适应干旱胁迫。该文从根系构型、理化特性和解剖学结构3个方面, 系统阐述了小麦根系特征对干旱胁迫的响应, 并探讨了其与干旱胁迫的关系和当前研究中存在的问题, 以期为相关研究提供参考。 相似文献
3.
干旱胁迫时, 小麦(Triticum aestivum)根系率先产生应激响应, 同时向地上部发出信号, 诱导地上部发生生理反应, 从而提高植株抗旱能力。根系构型包括平面几何性状和立体几何结构(即拓扑构型), 具有遗传稳定性和可塑性。干旱胁迫影响根系理化特性, 如根源化学信号、根系细胞酶类和根系渗透作用的响应。根系通过调整其解剖学结构和水分吸收动力等来适应干旱胁迫。该文从根系构型、理化特性和解剖学结构3个方面, 系统阐述了小麦根系特征对干旱胁迫的响应, 并探讨了其与干旱胁迫的关系和当前研究中存在的问题, 以期为相关研究提供参考。 相似文献
4.
Nitrogen deposition and reduction of terrestrial biodiversity: Evidence from temperate grasslands 总被引:2,自引:0,他引:2
Biodiversity is thought to be essential for ecosystem stability, function and long-term sustainability. Since nitrogen is the limiting nutrient for plant growth in many terrestrial ecosystems, reactive nitrogen has the potential to reduce the diversity of terrestrial vegetation and associated biota through favouring species adapted to quickly exploiting available nutrients. Although the potential has long been recognised, only recently has enough evidence come together to show beyond reasonable doubt that these changes are already occurring. Linked together, experimental, regional/e.rnpirical, and time-series research provide a powerful argument that enhanced deposition of reactive nitrogen across Great Britain, and potentially the rest of Europe, has resulted in a significant and ongoing decline in grassland species richness and diversity. 相似文献
5.
Biodiversity is thought to be essential for ecosystem stability, function and long-term sustainability. Since nitrogen is the limiting nutrient for plant growth in many terrestrial ecosystems, reactive nitrogen has the potential to reduce the diversity of terrestrial vegetation and associated biota through favouring species adapted to quickly exploiting available nutrients. Although the potential has long been recognised, only recently has enough evidence come together to show beyond reasonable doubt that these changes are already occurring. Linked together, experimental, regional/empirical, and time-series research provide a powerful argument that enhanced deposition of reactive nitrogen across Great Britain, and potentially the rest of Europe, has resulted in a significant and ongoing decline in grassland species richness and diversity. 相似文献
6.
7.
A six-year experimental restoration of biodiversity by shrub-clearing and grazing in calcareous grasslands of the French Prealps 总被引:5,自引:0,他引:5
The conservation of dry calcareous grasslands in the French Prealps strongly depends on the maintenance of low-intensity farming systems supported by agri-environmental schemes. An experimental assessment of the effect of current agro-pastoral management on the biodiversity of plant communities was conducted during a six-year permanent plot survey in four sites with contrasting habitat conditions (mesic to xeric). Analyses of species changes showed: (i) a strong increase in species richness and open grassland species frequencies four years after shrub-clearing, and (ii) a noticeable recovery of rare annuals and perennial species of conservation interest establishing in gaps created by grazing. At the community level, the restoration effect was evaluated by a between-year Correspondence Analysis, explaining 10.9% of the total floristic variability versus 29.5% for the site effect (between-site CA). Species ordination by between-year CA showed similar trajectories of vegetation changes during restoration despite different habitat conditions and grazing regimes between sites. The successful restoration of prealpine calcareous grasslands was explained by the availability of seed sources during the study in adjacent grazed or mown grasslands. Thus, restoration assessment should focus on dispersal possibilities and functional roles of species rather than species richness only. Finally, the spatial (i.e. the area of patches that need to be restored) and temporal (i.e. the frequency of shrub-clearing) implications for the large-scale conservation of prealpine calcareous grasslands by current agro-pastoral management are discussed. 相似文献
8.
9.
10.
土壤结构稳定性是衡量退化生态系统功能恢复和维持的关键指标。探究优势植物配置对土壤结构稳定性的影响,对于三峡水库消落带的植被恢复与岸线稳定具有重要意义。选择三峡水库消落带优势植物狗牙根(G)、香附子(X)和苍耳(C),设置空白(CK)、单种(G、X、C)、两两混种(GX、CX、CG)三种不同处理,利用Yoder湿筛法和计算机断层扫描技术(Computed Tomography,CT)对土壤团聚体粒径分布和土壤孔隙特征进行测定,对比分析了不同植物配置对土壤团聚体粒径分布与稳定性及土壤孔隙结构的影响。结果表明:1)相比于CK处理,不同植物配置处理下土壤团聚体(>0.25 mm)的质量百分比均有增加。植物根系的生长促进了土壤团聚体的形成与稳定,但并未达到显著水平。2)香附子单种及其与狗牙根的混种均抑制了土壤大孔隙的形成,可能由于香附子根系不发达,且其膨大的根结在生长过程中压缩了周围的土壤孔隙。然而,对于狗牙根和苍耳,无论是单种还是混种都会促进土壤大孔隙的发育。3)植物根系性状与土壤团聚体稳定性和土壤孔隙结构具有显著相关性,根长(RL)和根表面积(RSA)是影响土壤团聚体稳定性的关键根系性状,根长(RL)、根表面积(RSA)和根体积(RV)是控制土壤孔隙结构的关键性状。因此,为了有效提升土壤结构的稳定性,可以基于植物的根长、根表面积等根系功能性状,筛选出适合脆弱生态系统植被恢复的先锋或优势植物,并进行合理配置。该结果可为三峡水库消落带及相似区域的水土保持和生态恢复中的植物遴选与群落配置提供基础数据和理论支持。 相似文献
11.
《植物生态学报》2017,41(11):1168
Aims Soil aggregate is an important component of soil structure, playing an important role in the physical and biological protection mechanism of soil organic carbon (SOC) through isolating SOC from microorganisms. As far as we know, there are few studies, however, on exploring the spatial distribution of soil aggregate at the regional scale. Our objective was to investigate the mass allocation and stability of soil aggregate in different types of Nei Mongol grasslands. Methods We have established 78 sites with a size of 10 m × 10 m across the transect of Nei Mongol grasslands and collected soil samples from different soil depth up to 1 m. We used wet sieving method to separate different sizes of aggregate partition and used mean mass diameter (MMD) and geometric mean diameter (GMD) in order to evaluate the stability of soil aggregate. The two-way ANOVA was used to test the difference of mass percentage and stability of soil aggregate in different grassland types and soil depths. In addition, a linear regression analysis was used to analyze the correlations of mass percentage and stability of soil aggregate with both mean annual precipitation (MAP) and mean annual temperature (MAT). Important findings The results showed that the mass percentages of soil aggregate were highest in meadow steppe, while almost equal in typical steppe and desert steppe. However, no significant patterns were found along the soil depth. The mass percentage of soil aggregate fractions were positively correlated with MAP in all soil layers, but negatively correlated with MAT except the layer of 70-100 cm. For the stability of soil aggregate, at 0-10 and 10-20 cm, MMD and GMD of meadow steppe were significantly greater than those of typical and desert steppes, whereas no significant differences among three grassland types were found for other soil layers. Besides, MMD and GMD in meadow steppe and typical steppe gradually decreased along the soil depth. 相似文献
12.
自然成土过程中土壤养分的变化与植被原生演替常同时发生。随成土年龄变化的植物养分捕获策略(NASs)对植物竞争能力和演替过程具有重要影响。该文将植物NASs划分为细根、微生物、特殊根系、食虫和寄生策略等5个类型; 发现植物NASs的多样性随成土年龄的增加呈哑铃型变化模式; 特殊根系策略对植物捕获养分的作用在成土中期最小、后期最大, 细根和微生物策略的作用随成土年龄的增加逐渐降低; 分析了成土过程中NASs对植物种间关系影响的变化, 发现NASs对成土早期植物的促进作用和中期的竞争关系具有重要影响, 而成土后期多样和互补的NASs对植被群落的稳定共存及多样性的形成具有影响; 提出应进一步探究成土过程中土壤养分与植物NASs变化之间的定量关系, 开展更多研究以阐明NASs对植被原生演替、物种多样性形成和成土过程的贡献与机理。 相似文献
13.
Marc Pollet 《Journal of Insect Conservation》2001,5(2):99-116
The conservation value of grassland and reed marsh habitats in Belgium was determined on the basis of dolichopodid communities (Diptera: Dolichopodidae). Four grassland and one reed marsh sites within the 'Bourgoyen-Ossemeersen' Nature Reserve (B.O.) (Ghent) were sampled with white water traps from March 1993 until March 1994. Subsequently, these soil faunas were compared with those of reed marsh habitats in 'Het Meetjeslandse Krekengebied' (M.K.) sampled in 1990. Comparisons of species communities were carried out by means of multivariate analysis techniques. The DCA and CCA on the B.O. sites produced a clear separation between the grassland and the reed marsh communities. Light intensity and soil humidity were among the most important factors determining species distributions. The comparison between the B.O. and M.K. communities revealed that sampling sites were clustered according to their geographical location rather than to habitat type. Overall species richness and diversity was not significantly different between grasslands and reed marshes. However, conservation quality estimates of the sites using the Site Conservation Quality Index (SCQI) indicated that reed marshes comprise a considerably larger number of rare and Red Data Book species. Moreover, besides typical reed marsh-inhabiting species, reed marshes also house species with other ecological affinities sometimes in rather high abundance. As a result, reed marshes are considered highly valuable for the survival of several wetland dolichopodid species. 相似文献
14.
Assessing the joint development of vegetation cover and soil properties is crucial to evaluate the efficiency of soil bioengineering techniques, especially during the most critical initial phase of vegetation colonization. We set up a laboratory experiment to quantify and disentangle the effect of Alnus incana roots on soil permeability and aggregate stability. Plants were grown in pots in a climate chamber for four different growing periods (1, 2, 4 and 8 months). Pots were filled with a soil coming from a moraine of a landslide area in Central Switzerland. After each growing period, surface permeability, soil volume permeability and soil aggregate stability were measured together with the development of the root systems. Our results show that alder roots significantly improve both surface and whole soil volume permeability already after 2 months of growth. Nevertheless, an increase in root length density does not necessarily correspond to an increase in permeability. We could set as a threshold a root length density of 0.1 cm/cm3 until which an increase in root development corresponds to an increase in soil permeability, whereas after this threshold we observed a decrease in soil permeability. A significant increase in soil aggregate stability could be observed only with a root length density of 2 cm/cm3. No obvious correlation between soil permeability and aggregate stability could be found. Future work should validate these laboratory results with field data. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
15.
16.
The goal of our study was to investigate the impact of fungal endophytes in tall fescue (Festuca arundinacea) on rhizodeposition and in turn, the soil microbial community. Sand-based, aseptic microlysimeter units were constructed for the collection of rhizodeposit solutions for chemical analyses from the roots of endophyte-free (E−) and endophyte-infected (E+) tall fescue plants. E+ plants were infected with Neotyphodium coenophialum, the most common endophyte found in tall fescue. Rhizodeposit solutions collected over nine weeks from E+ grass contained more organic carbon and carbohydrates than E−. These solutions were allowed to percolate through columns of plant-free soils to assess the response of the soil microbial communities. Soils to which solutions from E+ grass were applied had significantly higher respiration rates than those receiving solutions from E− grass, suggesting that microbial activity was stimulated by changes in the rhizodeposits. Culture-based assays of the soil microbial community (plate counts and community-level physiological profiling) suggest that the basic structure of the microbial community was not affected by application of rhizodeposit solutions from E+ plants as compared to E−. Our results indicate that the presence of a fungal endophyte may enhance rhizodeposition by tall fescue and could consequently influence microbial mineralization processes in the soil. In grasslands where nutrients may be limiting, hosting a fungal endophyte has the potential to enhance plant nutrient supply indirectly via a stimulatory effect on the soil microbial biomass. Megan M. Van Hecke and Amy M. Treonis - Both authors contributed equally to this work. 相似文献
17.
Soil carbon stock and its changes in northern China's grasslands from 1980s to 2000s 总被引:4,自引:0,他引:4
YUANHE YANG JINGYUN FANG WENHONG MA PETE SMITH ANWAR MOHAMMAT SHAOPENG WANG WEI WANG 《Global Change Biology》2010,16(11):3036-3047
Climate warming is likely to accelerate the decomposition of soil organic carbon (SOC) which may lead to an increase of carbon release from soils, and thus provide a positive feedback to climate change. However, SOC dynamics in grassland ecosystems over the past two decades remains controversial. In this study, we estimated the magnitude of SOC stock in northern China's grasslands using 981 soil profiles surveyed from 327 sites across the northern part of the country during 2001–2005. We also examined the changes of SOC stock by comparing current measurements with historical records of 275 soil profiles derived from China's National Soil Inventory during the 1980s. Our results showed that, SOC stock in the upper 30 cm in northern China's grasslands was estimated to be 10.5 Pg C (1 Pg=1015 g), with an average density (carbon stock per area) of 5.3 kg C m?2. SOC density (SOCD) did not show significant association with mean annual temperature, but was positively correlated with mean annual precipitation. SOCD increased with soil moisture and reached a plateau when soil moisture was above 30%. Site‐level comparison indicated that grassland SOC stock did not change significantly over the past two decades, with a change of 0.08 kg C m?2, ranging from ?0.30 to 0.46 kg C m?2 at 95% confidence interval. Transect‐scale comparison confirmed that grassland SOC stock remained relatively constant from 1980s to 2000s, suggesting that soils in northern China's grasslands have been carbon neutral over the last 20 years. 相似文献
18.
地下生态过程是生态系统结构、功能和过程研究中最不确定的因素。由于技术和方法的限制,作为\"黑箱\"的地下生态系统已经成为限制生态学发展的瓶颈,也是未来生态学发展的主要方向。环境DNA技术,是指从土壤等环境样品中直接提取DNA片段,然后通过DNA测序技术来定性或定量化目标生物,以确定目标生物在生态系统中的分布及功能特征。环境DNA技术已成功用于地下生态过程的研究。目前,环境DNA技术在土壤微生物多样性及其功能方面的研究相对成熟,克服了土壤微生物研究中不能培养的问题,可以有效地分析土壤微生物的群落组成、多样性及空间分布,尤其是宏基因组学技术的发展,使得微生物生态功能方面的研究成为可能;而且,环境DNA技术已经在土壤动物生态学的研究中得到了初步应用,可快速分析土壤动物的多样性及其分布特征,更有效地鉴定出未知的或稀少的物种,鉴定土壤动物类群的幅度较宽;部分研究者通过提取分析土壤中DNA片段信息对生态系统植物多样性及植物分类进行了研究,其结果比传统的植物分类及物种多样性测定更精确,改变了以往对植物群落物种多样性模式的理解。同时,环境DNA技术克服传统根系研究方法中需要洗根、分根、只能测定单物种根系的局限,降低根系研究中细根区分的误差,并探索性地用于细根生物量的研究。主要综述了基于环境DNA技术的分子生物学方法在土壤微生物多样性及功能、土壤动物多样性、地下植物多样性及根系生态等地下生态过程研究中的应用进展。环境DNA技术对于以土壤微生物、土壤动物及地下植物根系为主体的地下生态学过程的研究具有革命性意义,并展现出良好的应用前景。可以预期,分子生物学技术与传统的生态学研究相结合将成为未来地下生态学研究的一个发展趋势。 相似文献
19.
We evaluated how three co‐occurring tree and four grassland species influence potentially harvestable biofuel stocks and above‐ and belowground carbon pools. After 5 years, the tree Pinus strobus had 6.5 times the amount of aboveground harvestable biomass as another tree Quercus ellipsoidalis and 10 times that of the grassland species. P. strobus accrued the largest total plant carbon pool (1375 g C m?2 or 394 g C m?2 yr), while Schizachyrium scoparium accrued the largest total plant carbon pool among the grassland species (421 g C m?2 or 137 g C m?2 yr). Quercus ellipsoidalis accrued 850 g C m?2, Q. macrocarpa 370 g C m?2, Poa pratensis 390 g C m?2, Solidago canadensis 132 g C m?2, and Lespedeza capitata 283 g C m?2. Only P. strobus and Q. ellipsoidalis significantly sequestered carbon during the experiment. Species differed in total ecosystem carbon accumulation from ?21.3 to +169.8 g C m?2 yr compared with the original soil carbon pool. Plant carbon gains with P. strobus were paralleled by a decrease of 16% in soil carbon and a nonsignificant decline of 9% for Q. ellipsoidalis. However, carbon allocation differed among species, with P. strobus allocating most aboveground in a disturbance prone aboveground pool, whereas Q. ellipsoidalis, allocated most carbon in less disturbance sensitive belowground biomass. These differences have strong implications for terrestrial carbon sequestration and potential biofuel production. For P. strobus, aboveground plant carbon harvest for biofuel would result in no net carbon sequestration as declines in soil carbon offset plant carbon gains. Conversely the harvest of Q. ellipsoidalis aboveground biomass would result in net sequestration of carbon belowground due to its high allocation belowground, but would yield lower amounts of aboveground biomass. Our results demonstrate that plant species can differentially impact ecosystem carbon pools and the distribution of carbon above and belowground. 相似文献
20.
Stuart W. Smith James D. M. Speed John Bukombe Shombe N. Hassan Richard D. Lyamuya Philipo Jacob Mtweve Anders Sundsdal Bente J. Graae 《Oikos》2019,128(4):596-607
Decomposition is a vital ecosystem process, increasingly modified by human activity. Theoretical frameworks and empirical studies that aim to understand the interplay between human land‐use, macro‐fauna and decomposition processes have primarily focused on leaf and wood litter. For a whole‐plant understanding of how land‐use and macro‐fauna influence decomposition, investigating root litter is required. Using litterbags, we quantified rates of root decomposition across contrasting tropical savanna land‐uses, namely wildlife and fire‐dominated protected areas and livestock pastureland without fire. By scanning litterbags for termite intrusion, we differentiated termite and microbial driven decomposition. Root litter was buried underneath different tree canopies (leguminous and non‐leguminous trees) and outside canopies to account for savanna landscape effects. Additionally, we established a termite cafeteria‐style experiment and common garden to explore termite selectivity of root litter and root trait relationships, respectively. After one year, we found no significant differences in root litter mass loss between wildlife dominated areas and pastureland. Instead, we found consistent species differences in root litter mass loss across land‐uses and additive and non‐additive effects of termites on root decomposition across plant species. Termite selectivity for root litter species occurred for both root and leaf litter buried near termite mounds, but was not explained by root traits measured in the common garden. Termite foraging was greater under leguminous tree canopies than other canopies; however, this did not influence rates of root decomposition. Our study suggests that land‐use has a weak direct effect on belowground processes in savannas. Instead, changes in herbaceous species composition and termite foraging have stronger impacts on belowground decomposition. Moreover, termites were not generalist decomposers of root litter, but their impact varies depending on plant species identity and likely associated root traits. This root litter selectivity by termites is likely to be an important contributor to spatial heterogeneity in savanna nutrient cycling. 相似文献