首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Crosby JS  Vayda ME 《The Plant cell》1991,3(9):1013-1023
Potato tubers exhibit distinct responses to wounding and hypoxia that include selective translation of stress-induced mRNAs. Newly synthesized wound-response mRNAs are bound to polysomes, whereas preexisting mRNAs are displaced and degraded. mRNAs that are induced and translated during hypoxic conditions are bound to ribosomes as expected. However, preexisting wound-response mRNAs whose translation is inhibited during hypoxia remain bound to polysomes, indicating that there are at least two distinct mechanisms by which translation is regulated in response to stress conditions. A 32-kD phosphoprotein is associated with polyribosomes from wounded tubers. This protein remains polysome bound as long as wound-response mRNAs are present, even during hypoxia when these mRNAs are no longer translated. However, association of the 32-kD protein with polysomes is not elicited by hypoxic stress alone. The kinase that phosphorylates this protein is active only for the first 24 hr after wounding and is not active during periods of hypoxia. This protein may mediate recognition of the wound-response mRNAs by ribosomes.  相似文献   

2.
3.
4.
5.
6.
Precise control of mRNA translation is fundamental for eukaryotic cell homeostasis, particularly in response to physiological and pathological stress. Alterations of this program can lead to the growth of damaged cells, a hallmark of cancer development, or to premature cell death such as seen in neurodegenerative diseases. Much of what is known concerning the molecular basis for translational control has been obtained from polysome analysis using a density gradient fractionation system. This technique relies on ultracentrifugation of cytoplasmic extracts on a linear sucrose gradient. Once the spin is completed, the system allows fractionation and quantification of centrifuged zones corresponding to different translating ribosomes populations, thus resulting in a polysome profile. Changes in the polysome profile are indicative of changes or defects in translation initiation that occur in response to various types of stress. This technique also allows to assess the role of specific proteins on translation initiation, and to measure translational activity of specific mRNAs. Here we describe our protocol to perform polysome profiles in order to assess translation initiation of eukaryotic cells and tissues under either normal or stress growth conditions.  相似文献   

7.
8.
9.
Messenger RNA injected Xenopus oocytes exhibit a differential capacity for translation. mRNAs translated in the free cytoplasm are translated efficiently whereas mRNAs translated on the rough endoplasmic reticulum (RER) membrane are translated inefficiently. If mRNA injected oocytes are injected additionally with proteins isolated from the RER, enhanced translation of RER-bound mRNAs is observed. When examined by sucrose gradient centrifugation and RNA dot blots, most of the injected RER-bound mRNA sediments less than or equal to the 80 S monosome. The RER proteins recruit these preinitiated mRNAs onto polysomes as evidenced by a shift in sedimentation to the polysome region of a sucrose gradient. When examined by immunoblotting, the RER proteins are shown to contain a protein which reacts specifically with an antibody directed against docking protein (SRP-receptor protein). However, this putative docking protein does not appear to be the protein which actually recruits the preinitiated mRNAs onto polysomes.  相似文献   

10.
11.
12.
13.
Targeting of mRNAs to distinct subcellular regions occurs in all polarized cells. The mechanisms by which RNA transport occurs are poorly understood. With the advent of RNA amplification methodologies and expression profiling it is now possible to catalogue the RNAs that are targeted to particular subcellular regions. In particular, neurons are polarized cells in which dendrites receive signals from presynaptic neurons. Upon stimulation (information receipt) the dendrite processes the information such that an immediate dendritic response is generated as well as a longer-term somatic response. The integrated cellular response results in a signal that can be propagated through the axon to the next post-synaptic neuron. Much previous work has shown that mRNAs can be localized in dendrites and that local translation in dendrites can occur. In this chapter the methods for analysis of RNAs that are localized to dendrites are reviewed and a partial list of dendritically localized RNAs is presented. This information may be useful in identifying RNA regulatory regions that are responsible for specifying rate of RNA transport and the dendritic sites at which targeted RNAs dock so that they can be translated.  相似文献   

14.
15.
16.
17.
18.
19.
20.
Hypoxia occurs in a wide variety of physiological and pathological conditions, including tumorigenesis. Tumor cells have to adapt to hypoxia by altering their gene expression and protein synthesis. Here, we showed that hypoxia inhibits translation through activation of PERK and inactivation of mTOR in human colon cancer HCT116 cells. Prolonged hypoxia (1% O2, 16 h) dramatically inhibits general translation in HCT116 cells, yet selected mRNAs remain efficiently translated under such a condition. Using microarray analysis of polysome- associated mRNAs, we identified a large number of hypoxia-regulated genes at the translational level. Efficiently translated mRNAs during hypoxia were validated by polysome profiling and quantitative real-time RT-PCR. Pathway enrichment analysis showed that many of the up-regulated genes are involved in lysosome, glycan and lipid metabolism, antigen presentation, cell adhesion, and remodeling of the extracellular matrix and cytoskeleton. The majority of down-regulated genes are involved in apoptosis, ubiquitin-mediated proteolysis, and oxidative phosphorylation. Further investigation showed that hypoxia induces lysosomal autophagy and mitochondrial dysfunction through translational regulation in HCT116 cells. The abundance of several translation factors and the mTOR kinase activity are involved in hypoxia-induced mitochondrial autophagy in HCT116 cells. Our studies highlight the importance of translational regulation for tumor cell adaptation to hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号