首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
Globally increasing temperatures may strongly affect insect herbivore performance, as their growth and development is directly linked to ambient temperature as well as host‐plant quality. In contrast to direct effects of temperature on herbivores, indirect effects mediated via thermal effects on host‐plant quality are only poorly understood, despite having the potential to substantially impact performance and thereby to alter responses to the changing climatic conditions. We here use a full‐factorial design to explore the direct (larvae were reared at 17 °C or 25 °C) and indirect effects (host plants were reared at 17 °C or 25 °C) of temperature on larval growth and life‐history traits in the temperate‐zone butterfly Pieris napi. Direct temperature effects reflected the common pattern of prolonged development and increased body mass at lower temperatures. At the higher temperature, efficiency of converting food into body matter was much reduced being accompanied by an increased food intake, suggesting compensatory feeding. Indirect temperature effects were apparent as reduced body mass, longer development time, an increased food intake, and a reduced efficiency of converting food into body matter in larvae feeding on plants grown at the higher temperature, thus indicating poor host‐plant quality. The effects of host‐plant quality were more pronounced at the higher temperature, at which compensatory feeding was much less efficient. Our results highlight that temperature‐mediated changes in host‐plant quality are a significant, but largely overlooked source of variation in herbivore performance. Such effects may exaggerate negative effects of global warming, which should be considered when trying to forecast species' responses to climate change.  相似文献   

2.
Between‐individual variation in phenotypes within a population is the basis of evolution. However, evolutionary and behavioural ecologists have mainly focused on estimating between‐individual variance in mean trait and neglected variation in within‐individual variance, or predictability of a trait. In fact, an important assumption of mixed‐effects models used to estimate between‐individual variance in mean traits is that within‐individual residual variance (predictability) is identical across individuals. Individual heterogeneity in the predictability of behaviours is a potentially important effect but rarely estimated and accounted for. We used 11 389 measures of docility behaviour from 1576 yellow‐bellied marmots (Marmota flaviventris) to estimate between‐individual variation in both mean docility and its predictability. We then implemented a double hierarchical animal model to decompose the variances of both mean trait and predictability into their environmental and genetic components. We found that individuals differed both in their docility and in their predictability of docility with a negative phenotypic covariance. We also found significant genetic variance for both mean docility and its predictability but no genetic covariance between the two. This analysis is one of the first to estimate the genetic basis of both mean trait and within‐individual variance in a wild population. Our results indicate that equal within‐individual variance should not be assumed. We demonstrate the evolutionary importance of the variation in the predictability of docility and illustrate potential bias in models ignoring variation in predictability. We conclude that the variability in the predictability of a trait should not be ignored, and present a coherent approach for its quantification.  相似文献   

3.
Temperature is one of the most important environmental parameters with crucial impacts on nearly all biological processes. Due to anthropogenic activity, average air temperatures are expected to increase by a few degrees in coming decades, accompanied by an increased occurrence of extreme temperature events. Such global trends are likely to have various major impacts on human society through their influence on natural ecosystems, food production and biotic interactions, including diseases. In this study, we used a combination of statistical genetics, experimental evolution and common garden experiments to investigate the evolutionary potential for thermal adaptation in the potato late blight pathogen, Phytophthora infestans, and infer its likely response to changing temperatures. We found a trade‐off associated with thermal adaptation to heterogeneous environments in P. infestans, with the degree of the trade‐off peaking approximately at the pathogen's optimum growth temperature. A genetic trade‐off in thermal adaptation was also evidenced by the negative association between a strain's growth rate and its thermal range for growth, and warm climates selecting for a low pathogen growth rate. We also found a mirror effect of phenotypic plasticity and genetic adaptation on growth rate. At below the optimum, phenotypic plasticity enhances pathogen's growth rate but nature selects for slower growing genotypes when temperature increases. At above the optimum, phenotypic plasticity reduces pathogen's growth rate but natural selection favours for faster growing genotypes when temperature increases further. We conclude from these findings that the growth rate of P. infestans will only be marginally affected by global warming.  相似文献   

4.
Temperature and nutrition are among the most important environmental factors affecting ectotherm growth. As temperature and host‐plant quality often co‐vary in nature, the interaction between the two is of potentially high ecological importance for herbivorous insects. We here use the temperate‐zone butterfly Pieris napi L. (Lepidoptera: Pieridae) to investigate interactive effects of larval rearing temperature and host‐plant quality (by manipulating water availability) on larval growth. As growth rates have been hypothesized to govern stress tolerance, we additionally assessed adult starvation resistance. Butterflies followed the ‘temperature‐size rule’, which states that body size increases at lower developmental temperatures, proximately caused by differences in growth increment, which resulted from increased consumption at the lower temperature. Larvae benefitted from feeding on stressed plants from the low‐water regime by having higher body mass, growth rate, and food conversion efficiency, thus supporting the plant stress hypothesis, which predicts that plant quality for herbivores should increase if stress is imposed on plants. Some effects of host‐plant quality on larval growth parameters were as strong as or even stronger than effects of temperature, whereas interactive effects between temperature and food quality were scarce. At the low temperature, adult starvation resistance was higher than at the higher temperature and females were more resistant than males, whereas plant water regime had no clear impact. No evidence was found for a trade‐off between growth rate and starvation resistance. This study illustrates the importance of considering effects of host‐plant quality along with variation in other environmental factors for estimating the impact of environmental changes on herbivorous species.  相似文献   

5.
Climate change is currently one of the main driving forces behind changes in species distributions, and understanding the mechanisms that underpin macroecological patterns is necessary for a more predictive science. Warming sea water temperatures are expected to drive changes in ectothermic marine species ranges due to their thermal tolerance levels. Here, we develop a mechanistic tool to predict size‐ and season‐specific distributions based on the physiology of the species and the temperature and food conditions in the sea. The effects of climate conditions on physiological‐based habitat utilization was then examined for different size‐classes of two commercially important fish species in the North Sea, plaice, Pleuronectes platessa, and sole, Solea solea. The two species provide an attractive comparison as they differ in their physiology (e.g. preferred temperature range). Combining dynamic energy budget (DEB) models with the temperature and food conditions estimated by an ecosystem model (ERSEM), allowed spatial differences in potential growth (as a proxy for habitat quality) to be estimated for 2 years with contrasting temperature and food conditions. The resulting habitat quality maps were in broad agreement with observed ontogenetic and seasonal changes in distribution as well as with the recent changes in distribution which could be attributed to an increase in coastal temperatures. Our physiological‐based model provides a powerful tool to explore the effect of climate change on the spatio‐temporal fish dynamics, predict effects of local or broad‐scale environmental changes and provide a physiological basis for observed changes in species distributions.  相似文献   

6.
1. We asked whether an increase in food supply in the field would increase the ability of fish populations to withstand climate warming, as predicted by certain bioenergetic models and aquarium experiments. 2. We subsidised the in situ food supply of wild juvenile steelhead (Oncorhynchus mykiss) in a small stream near the species’ southern limit. High‐quality food (10% of fish biomass per day) was added to the drift in eight in‐stream enclosures along a naturally‐occurring thermal gradient. 3. The temperatures during the experiment were well below the upper thermal limit for the species (means of enclosures ranged from 15.1 to 16.5 °C). Food supplements had no discernible effect on survival, but raised mean (± SD) specific growth rate substantially, from 0.038 ± 0.135 in controls to 2.28 ± 0.51 in feeding treatments. Food supplements doubled the variation in growth among fish. 4. The mean and variance of water temperature were correlated across the enclosures, and were therefore transformed into principal component scores T1 (which expressed the stream‐wide correlation pattern) and T2 (which expressed local departures from the pattern). Even though T1 accounted for 96% of the variation in temperature mean and variance, it was not a significant predictor of fish growth. T2 was a significant predictor of growth. The predicted time to double body mass in an enclosure with a large T2 score (cool‐variable) was half that in an enclosure with a low T2 score (warm‐stable). 5. Contrary to expectation, temperature effects were neutral, at least with respect to the main axis of variation among enclosures (cool‐stable versus warm‐variable). Along the orthogonal axis (cool‐variable versus warm‐stable), the effect was opposite from expectations, probably because of temperature variation. Subtle patterns of temperature heterogeneity in streams can be important to potential growth of O. mykiss.  相似文献   

7.
Parasites typically have broader thermal limits than hosts, so large performance gaps between pathogens and their cold‐ and warm‐adapted hosts should occur at relatively warm and cold temperatures, respectively. We tested this thermal mismatch hypothesis by quantifying the temperature‐dependent susceptibility of cold‐ and warm‐adapted amphibian species to the fungal pathogen Batrachochytrium dendrobatidis (Bd) using laboratory experiments and field prevalence estimates from 15 410 individuals in 598 populations. In both the laboratory and field, we found that the greatest susceptibility of cold‐ and warm‐adapted hosts occurred at relatively warm and cool temperatures, respectively, providing support for the thermal mismatch hypothesis. Our results suggest that as climate change shifts hosts away from their optimal temperatures, the probability of increased host susceptibility to infectious disease might increase, but the effect will depend on the host species and the direction of the climate shift. Our findings help explain the tremendous variation in species responses to Bd across climates and spatial, temporal and species‐level variation in disease outbreaks associated with extreme weather events that are becoming more common with climate change.  相似文献   

8.
Globally, Arctic and Subarctic regions have experienced the greatest temperature increases during the last 30 years. These extreme changes have amplified threats to the freshwater ecosystems that dominate the landscape in many areas by altering water budgets. Several studies in temperate environments have examined the adaptive capacity of organisms to enhance our understanding of the potential repercussions of warming and associated accelerated drying for freshwater ecosystems. However, few experiments have examined these impacts in Arctic or Subarctic freshwater ecosystems, where the climate is changing most rapidly. To evaluate the capacity of a widespread ectotherm to anticipated environmental changes, we conducted a mesocosm experiment with wood frogs (Rana sylvatica) in the Canadian Subarctic. Three warming treatments were fully crossed with three drying treatments to simulate a range of predicted changes in wetland environments. We predicted wetland warming and drying would act synergistically, with water temperature partially compensating for some of the negative effects of accelerated drying. Across all drying regimes, a 1 °C increase in water temperature increased the odds of survival by 1.79, and tadpoles in 52‐day and 64‐day hydroperiod mesocosms were 4.1–4.3 times more likely to survive to metamorphosis than tadpoles in 45‐day mesocosms. For individuals who survived to metamorphosis, there was only a weak negative effect of temperature on size. As expected, increased temperatures accelerated tadpole growth through day 30 of the experiment. Our results reveal that one of the dominant herbivores in Subarctic wetlands, wood frog tadpoles, are capable of increasing their developmental rates in response to increased temperature and accelerated drying, but only in an additive manner. The strong negative effects of drying on survival, combined with lack of compensation between these two environmental drivers, suggest changes in the aquatic environment that are expected in this ecosystem will reduce mean fitness of populations across the landscape.  相似文献   

9.
Covariation among traits can modify the evolutionary trajectory of complex structures. This process is thought to operate at a microevolutionary scale, but its long‐term effects remain controversial because trait covariation can itself evolve. Flower morphology, and particularly floral trait (co)variation, has been envisioned as the product of pollinator‐mediated selection. Available evidence suggests that major changes in pollinator assemblages may affect the joint expression of floral traits and their phenotypic integration. We expect species within a monophyletic lineage sharing the same pollinator type will show not only similarity in trait means but also similar phenotypic variance‐covariance structures. Here, we tested this expectation using eighteen Salvia species pollinated either by bees or by hummingbirds. Our findings indicated a nonsignificant multivariate phylogenetic signal and a decoupling between means and variance‐covariance phenotypic matrices of floral traits during the evolution to hummingbird pollination. Mean trait value analyses revealed significant differences between bee‐ and hummingbird‐pollinated Salvia species although fewer differences were detected in the covariance structure between groups. Variance‐covariance matrices were much more similar among bee‐ than hummingbird‐pollinated species. This pattern is consistent with the expectation that, unlike hummingbirds, bees physically manipulate the flower, presumably exerting stronger selection pressures favouring morphological convergence among species. Overall, we conclude that the evolution of hummingbird pollination proceeded through different independent transitions. Thus, although the evolution of hummingbird pollination led to a new phenotypic optimum, the process involved the diversification of the covariance structure.  相似文献   

10.
Due to the ephemeral nature of carcasses they grow on, necrophagous blowfly larvae should minimize the time spent on the cadaver. This could be achieved by moving to high‐temperature areas. On that basis, we theorized that larvae placed in a heterogeneous thermal environment would move to the higher temperature that speed up their development. This study was designed to (1) test the ability of necrophagous larvae to orientate in a heterogeneous thermal environment, and (2) compare the temperatures selected by the larvae of three common blowfly species: Lucilia sericata (Meigen), Calliphora vomitoria (L.) and Calliphora vicina (Robineau‐Desvoidy). For this purpose, we designed a setup we named Thermograde. It consists of a food‐supplied linear thermal gradient that allows larvae to move, feed, and grow in close‐to‐real conditions, and to choose to stay at a given temperature. For each species and replication, 80 young third instars were placed on the thermal gradient. The location of larvae was observed after 19 h, with fifteen replications per species. The larvae of each species formed aggregations that were always located at the same temperatures, which were highly species‐specific: 33.3 ± 1.52 °C for L. sericata, 29.6 ± 1.63 °C for C. vomitoria, and 22.4 ± 1.55 °C for C. vicina. According to the literature, these value allows a fast development of the larvae, but not to reach the maximum development rate. As control experiments clearly demonstrate that larval distribution was not due to differences in food quality, we hypothesized that the local temperature selection by larvae may result from a trade‐off between development quality and duration. Indeed, temperature controls not only the development rate of the larvae, but also the quality of their growth and survival rate. Finally, results raise questions regarding the way larvae moved on the gradient and located their preferential temperature.  相似文献   

11.
Boreal forests are crucial in regulating global vegetation‐atmosphere feedbacks, but the impact of climate change on boreal tree carbon fluxes is still unclear. Given the sensitivity of global vegetation models to photosynthetic and respiration parameters, we determined how predictions of net carbon gain (C‐gain) respond to variation in these parameters using a stand‐level model (MAESTRA). We also modelled how thermal acclimation of photosynthetic and respiratory temperature sensitivity alters predicted net C‐gain responses to climate change. We modelled net C‐gain of seven common boreal tree species under eight climate scenarios across a latitudinal gradient to capture a range of seasonal temperature conditions. Physiological parameter values were taken from the literature together with different approaches for thermally acclimating photosynthesis and respiration. At high latitudes, net C‐gain was stimulated up to 400% by elevated temperatures and CO2 in the autumn but suppressed at the lowest latitudes during midsummer under climate scenarios that included warming. Modelled net C‐gain was more sensitive to photosynthetic capacity parameters (Vcmax, Jmax, Arrhenius temperature response parameters, and the ratio of Jmax to Vcmax) than stomatal conductance or respiration parameters. The effect of photosynthetic thermal acclimation depended on the temperatures where it was applied: acclimation reduced net C‐gain by 10%–15% within the temperature range where the equations were derived but decreased net C‐gain by 175% at temperatures outside this range. Thermal acclimation of respiration had small, but positive, impacts on net C‐gain. We show that model simulations are highly sensitive to variation in photosynthetic parameters and highlight the need to better understand the mechanisms and drivers underlying this variability (e.g., whether variability is environmentally and/or biologically driven) for further model improvement.  相似文献   

12.
Coral bleaching and mortality are predicted to increase as climate change‐induced thermal‐stress events become more frequent. Although many studies document coral bleaching and mortality patterns, few studies have examined deviations from the expected positive relationships among thermal stress, coral bleaching, and coral mortality. This study examined the response of >30,000 coral colonies at 80 sites in Palau, during a regional thermal‐stress event in 2010. We sought to determine the spatial and taxonomic nature of bleaching and examine whether any habitats were comparatively resistant to thermal stress. Bleaching was most severe in the northwestern lagoon, in accordance with satellite‐derived maximum temperatures and anomalous temperatures above the long‐term averages. Pocillopora populations suffered the most extensive bleaching and the highest mortality. However, in the bays where temperatures were higher than elsewhere, bleaching and mortality were low. The coral‐community composition, constant exposure to high temperatures, and high vertical attenuation of light caused by naturally high suspended particulate matter buffered the corals in bays from the 2010 regional thermal‐stress event. Yet, nearshore reefs are also most vulnerable to land‐use change. Therefore, nearshore reefs should be given high conservation status because they provide refugia for coral populations as the oceans continue to warm.  相似文献   

13.
14.
15.
16.
Understanding the processes that influence range expansions during climate warming is paramount for predicting population extirpations and preparing for the arrival of non‐native species. While climate warming occurs over a background of variation due to cyclical processes and irregular events, the temporal structure of the thermal environment is largely ignored when forecasting the dynamics of non‐native species. Ecological theory predicts that high levels of temporal autocorrelation in the environment – relatedness between conditions occurring in close temporal proximity – will favor populations that would otherwise have an average negative growth rate by increasing the duration of favorable environmental periods. Here, we invoke such theory to explain the success of biological invasions and evaluate the hypothesis that sustained periods of high environmental temperature can act synergistically with increases in mean temperature to favor the establishment of non‐native species. We conduct a 60‐day field mesocosm experiment to measure the population dynamics of the non‐native cladoceran zooplankter Daphnia lumholtzi and a native congener Daphnia pulex in ambient temperature environments (control), warmed with recurrent periods of high environmental temperatures (uncorrelated‐warmed), or warmed with sustained periods of high environmental temperatures (autocorrelated‐warmed), such that both warmed treatments exhibited the same mean temperature but exhibited different temporal structures of their thermal environments. Maximum D. lumholtzi densities in the warmed‐autocorrelated treatment were threefold and eightfold higher relative to warmed‐uncorrelated and control treatments, respectively. Yet, D. lumholtzi performed poorly across all experimental treatments relative to D. pulex and were undetectable by the end of the experiment. Using mathematical models, we show that this increase in performance can occur alongside increasing temporal autocorrelation and should occur over a broad range of warming scenarios. These results provide both empirical and theoretical evidence that the temporal structure of the environment can influence the performance of species undergoing range expansions due to climate warming.  相似文献   

17.
Theoretical models on the evolution of phenotypic plasticity predict a zone of canalization where reaction norms cross, and genetic variation is minimized in the environment a population most frequently encounter. Empirical tests of this prediction are largely missing, in particular for life‐history traits. We addressed this prediction by quantifying thermal reaction norms of three life‐history traits (somatic growth rate, age and size at maturation) of a Norwegian population of Daphnia magna and testing for the occurrence of an intermediate temperature (Tm) at which genetic variance in the traits is minimized. Size at maturation changed relatively little with temperature compared to the other traits, and there was no genetic variance in the shape of the reaction norm. Consequently, age at maturation and somatic growth rate were strongly negatively correlated. Both traits showed a strong genotype–environment interaction, and the estimated Tm was 14 °C for both age at maturation and growth rate. This value of Tm corresponds well with mean summer temperatures experienced by the population and suggests that the population has evolved under stabilizing selection in temperatures that fluctuate around this mean temperature. These results suggest local adaptation to temperature in the studied population and allow predicting evolutionary trajectories of thermal reaction norms under changing thermal regimes.  相似文献   

18.
Many traits studied in ecology and evolutionary biology change their expression in response to a continuously varying environmental factor. One well‐studied example are thermal performance curves (TPCs); continuous reaction norms that describe the relationship between organismal performance and temperature and are useful for understanding the trade‐offs involved in thermal adaptation. We characterized curves describing the thermal sensitivity of voluntary locomotor activity in a set of 66 spontaneous mutation accumulation lines in the fly Drosophila serrata. Factor‐analytic modeling of the mutational variance–covariance matrix, M , revealed support for three axes of mutational variation in males and two in females. These independent axes of mutational variance corresponded well to the major axes of TPC variation required for different types of thermal adaptation; “faster‐slower” representing changes in performance largely independent of temperature, and the “hotter‐colder” and “generalist‐specialist” axes, representing trade‐offs. In contrast to its near‐absence from standing variance in this species, a “faster‐slower” axis, accounted for most mutational variance (75% in males and 66% in females) suggesting selection may easily fix or remove these types of mutations in outbred populations. Axes resembling the “hotter‐colder” and “generalist‐specialist” modes of variation contributed less mutational variance but nonetheless point to an appreciable input of new mutations that may contribute to thermal adaptation.  相似文献   

19.
Ectotherms can attain preferred body temperatures by selecting specific temperature microhabitats within a varied thermal environment. The side‐blotched lizard, Uta stansburiana may employ microhabitat selection to thermoregulate behaviorally. It is unknown to what degree habitat structural complexity provides thermal microhabitats for thermoregulation. Thermal microhabitat structure, lizard temperature, and substrate preference were simultaneously evaluated using thermal imaging. A broad range of microhabitat temperatures was available (mean range of 11°C within 1–2 m2) while mean lizard temperature was between 36°C and 38°C. Lizards selected sites that differed significantly from the mean environmental temperature, indicating behavioral thermoregulation, and maintained a temperature significantly above that of their perch (mean difference of 2.6°C). Uta's thermoregulatory potential within a complex thermal microhabitat structure suggests that a warming trend may prove advantageous, rather than detrimental for this population.  相似文献   

20.
High‐temperature tolerance in plants is important in a warming world, with extreme heat waves predicted to increase in frequency and duration, potentially leading to lethal heating of leaves. Global patterns of high‐temperature tolerance are documented in animals, but generally not in plants, limiting our ability to assess risks associated with climate warming. To assess whether there are global patterns in high‐temperature tolerance of leaf metabolism, we quantified Tcrit (high temperature where minimal chlorophyll a fluorescence rises rapidly and thus photosystem II is disrupted) and Tmax (temperature where leaf respiration in darkness is maximal, beyond which respiratory function rapidly declines) in upper canopy leaves of 218 plant species spanning seven biomes. Mean site‐based Tcrit values ranged from 41.5 °C in the Alaskan arctic to 50.8 °C in lowland tropical rainforests of Peruvian Amazon. For Tmax, the equivalent values were 51.0 and 60.6 °C in the Arctic and Amazon, respectively. Tcrit and Tmax followed similar biogeographic patterns, increasing linearly (?8 °C) from polar to equatorial regions. Such increases in high‐temperature tolerance are much less than expected based on the 20 °C span in high‐temperature extremes across the globe. Moreover, with only modest high‐temperature tolerance despite high summer temperature extremes, species in mid‐latitude (~20–50°) regions have the narrowest thermal safety margins in upper canopy leaves; these regions are at the greatest risk of damage due to extreme heat‐wave events, especially under conditions when leaf temperatures are further elevated by a lack of transpirational cooling. Using predicted heat‐wave events for 2050 and accounting for possible thermal acclimation of Tcrit and Tmax, we also found that these safety margins could shrink in a warmer world, as rising temperatures are likely to exceed thermal tolerance limits. Thus, increasing numbers of species in many biomes may be at risk as heat‐wave events become more severe with climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号