首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tropical forest responses to climatic variability have important consequences for global carbon cycling, but are poorly understood. As empirical, correlative studies cannot disentangle the interactive effects of climatic variables on tree growth, we used a tree growth model (IBTREE) to unravel the climate effects on different physiological pathways and in turn on stem growth variation. We parameterized the model for canopy trees of Toona ciliata (Meliaceae) from a Thai monsoon forest and compared predicted and measured variation from a tree‐ring study over a 30‐year period. We used historical climatic variation of minimum and maximum day temperature, precipitation and carbon dioxide (CO2) in different combinations to estimate the contribution of each climate factor in explaining the inter‐annual variation in stem growth. Running the model with only variation in maximum temperature and rainfall yielded stem growth patterns that explained almost 70% of the observed inter‐annual variation in stem growth. Our results show that maximum temperature had a strong negative effect on the stem growth by increasing respiration, reducing stomatal conductance and thus mitigating a higher transpiration demand, and – to a lesser extent – by directly reducing photosynthesis. Although stem growth was rather weakly sensitive to rain, stem growth variation responded strongly and positively to rainfall variation owing to the strong inter‐annual fluctuations in rainfall. Minimum temperature and atmospheric CO2 concentration did not significantly contribute to explaining the inter‐annual variation in stem growth. Our innovative approach – combining a simulation model with historical data on tree‐ring growth and climate – allowed disentangling the effects of strongly correlated climate variables on growth through different physiological pathways. Similar studies on different species and in different forest types are needed to further improve our understanding of the sensitivity of tropical tree growth to climatic variability and change.  相似文献   

2.
Altered dynamics of forest recovery under a changing climate   总被引:2,自引:0,他引:2  
Forest regeneration following disturbance is a key ecological process, influencing forest structure and function, species assemblages, and ecosystem–climate interactions. Climate change may alter forest recovery dynamics or even prevent recovery, triggering feedbacks to the climate system, altering regional biodiversity, and affecting the ecosystem services provided by forests. Multiple lines of evidence – including global‐scale patterns in forest recovery dynamics; forest responses to experimental manipulation of CO2, temperature, and precipitation; forest responses to the climate change that has already occurred; ecological theory; and ecosystem and earth system models – all indicate that the dynamics of forest recovery are sensitive to climate. However, synthetic understanding of how atmospheric CO2 and climate shape trajectories of forest recovery is lacking. Here, we review these separate lines of evidence, which together demonstrate that the dynamics of forest recovery are being impacted by increasing atmospheric CO2 and changing climate. Rates of forest recovery generally increase with CO2, temperature, and water availability. Drought reduces growth and live biomass in forests of all ages, having a particularly strong effect on seedling recruitment and survival. Responses of individual trees and whole‐forest ecosystems to CO2 and climate manipulations often vary by age, implying that forests of different ages will respond differently to climate change. Furthermore, species within a community typically exhibit differential responses to CO2 and climate, and altered community dynamics can have important consequences for ecosystem function. Age‐ and species‐dependent responses provide a mechanism by which climate change may push some forests past critical thresholds such that they fail to recover to their previous state following disturbance. Altered dynamics of forest recovery will result in positive and negative feedbacks to climate change. Future research on this topic and corresponding improvements to earth system models will be a key to understanding the future of forests and their feedbacks to the climate system.  相似文献   

3.
Climate and forest structure are considered major drivers of forest demography and productivity. However, recent evidence suggests that the relationships between climate and tree growth are generally non‐stationary (i.e. non‐time stable), and it remains uncertain whether the relationships between climate, forest structure, demography and productivity are stationary or are being altered by recent climatic and structural changes. Here we analysed three surveys from the Spanish Forest Inventory covering c. 30 years of information and we applied mixed and structural equation models to assess temporal trends in forest structure (stand density, basal area, tree size and tree size inequality), forest demography (ingrowth, growth and mortality) and above‐ground forest productivity. We also quantified whether the interactive effects of climate and forest structure on forest demography and above‐ground forest productivity were stationary over two consecutive time periods. Since the 1980s, density, basal area and tree size increased in Iberian forests, and tree size inequality decreased. In addition, we observed reductions in ingrowth and growth, and increases in mortality. Initial forest structure and water availability mainly modulated the temporal trends in forest structure and demography. The magnitude and direction of the interactive effects of climate and forest structure on forest demography changed over the two time periods analysed indicating non‐stationary relationships between climate, forest structure and demography. Above‐ground forest productivity increased due to a positive balance between ingrowth, growth and mortality. Despite increasing productivity over time, we observed an aggravation of the negative effects of climate change and increased competition on forest demography, reducing ingrowth and growth, and increasing mortality. Interestingly, our results suggest that the negative effects of climate change on forest demography could be ameliorated through forest management, which has profound implications for forest adaptation to climate change.  相似文献   

4.
With improvements in mapping regional distributions of vegetation using satellite‐derived information, there is an increasing interest in the assessment of current limitations on forest growth and in making projections of how productivity may be altered in response to changing climatic conditions and management policies. We utilised a simplified physiologically based process model (3‐PG) across a 54 000 km2 mountainous region of southwestern Oregon, USA, to evaluate the degree to which maximum periodic mean annual increment (PAI) of forests could be predicted at a set of 448 forest inventory plots. The survey data were pooled into six broad forest types (coastal rain forest, interior coast range forest, mixed conifer, dry‐site Douglas‐fir, subalpine forest, and pine forest) and compared to the 3‐PG predictions at a spatial resolution of 1 km2. We found good agreement (r2 = 0.84) between mean PAI values of forest productivity for the six forest types with those obtained from field surveys. With confidence at this broader level of integration, we then ran model simulations to evaluate the constraints imposed by (i) soil fertility under current climatic conditions, (ii) the effect of doubling monthly precipitation across the region, and (iii) a widely used climatic change scenario that involves modifications in monthly mean temperatures and precipitation, as well as a doubling in atmospheric CO2 concentrations. These analyses showed that optimum soil fertility would more than double growth, with the greatest response in the subalpine type and the least increase in the coastal rain forests. Doubling the precipitation increased productivity in the pine type (> 50%) with reduced responses elsewhere. The climate change scenario with doubled atmospheric CO2 increased growth by 50% on average across all forest types, primarily as a result of a projected 33% increase in photosynthetic capacity. This modelling exercise indicates that, at a regional scale, a general relationship exists between simulated maximum leaf area index and maximum aboveground growth, supporting the contention that satellite‐derived estimates of leaf area index may be good measures of the potential productivity of temperate evergreen forests.  相似文献   

5.
水分利用效率(Water Use Efficiency, WUE)是深入理解生态系统碳、水循环及两者耦合关系的重要指标,然而我国重要森林类型之一的竹林的WUE时空格局及其驱动机制研究不足。通过MODIS净初级生产力(NPP)和蒸散(ET)数据得到竹林区WUE,采用线性趋势法计算WUE年际变化率表征变化趋势,并应用地理加权回归(GWR)模型分析了WUE与气候和地形等10个驱动因子的关系,探究了中国南方竹林区近20年间(2000—2019)WUE驱动机制。结果表明:(1)2000—2019年中国南方竹林区WUE多年均值为0.89 gC m-2 mm-1,呈显著下降趋势,下降速率为0.0028 gC m-2 mm-1 a-1,ET上升速度大于NPP上升速度是造成WUE下降的主要原因;WUE呈南高北低的空间分布格局,83.5%区域的WUE呈下降趋势。(2)基于GWR模型的WUE驱动力分析发现,WUE变化最强的驱动因子是CO2浓度和年降水量,而海拔、坡度等地形因子的...  相似文献   

6.
Forest resilience to climate change is a global concern given the potential effects of increased disturbance activity, warming temperatures and increased moisture stress on plants. We used a multi‐regional dataset of 1485 sites across 52 wildfires from the US Rocky Mountains to ask if and how changing climate over the last several decades impacted post‐fire tree regeneration, a key indicator of forest resilience. Results highlight significant decreases in tree regeneration in the 21st century. Annual moisture deficits were significantly greater from 2000 to 2015 as compared to 1985–1999, suggesting increasingly unfavourable post‐fire growing conditions, corresponding to significantly lower seedling densities and increased regeneration failure. Dry forests that already occur at the edge of their climatic tolerance are most prone to conversion to non‐forests after wildfires. Major climate‐induced reduction in forest density and extent has important consequences for a myriad of ecosystem services now and in the future.  相似文献   

7.
Several studies have documented that regional climate warming and the resulting increase in drought stress have triggered increased tree mortality in semiarid forests with unavoidable impacts on regional and global carbon sequestration. Although climate warming is projected to continue into the future, studies examining long‐term resilience of semiarid forests against climate change are limited. In this study, long‐term forest resilience was defined as the capacity of forest recruitment to compensate for losses from mortality. We observed an obvious change in long‐term forest resilience along a local aridity gradient by reconstructing tree growth trend and disturbance history and investigating postdisturbance regeneration in semiarid forests in southern Siberia. In our study, with increased severity of local aridity, forests became vulnerable to drought stress, and regeneration first accelerated and then ceased. Radial growth of trees during 1900–2012 was also relatively stable on the moderately arid site. Furthermore, we found that smaller forest patches always have relatively weaker resilience under the same climatic conditions. Our results imply a relatively higher resilience in arid timberline forest patches than in continuous forests; however, further climate warming and increased drought could possibly cause the disappearance of small forest patches around the arid tree line. This study sheds light on climate change adaptation and provides insight into managing vulnerable semiarid forests.  相似文献   

8.
Variability in three Pacific teleconnection patterns are examined to see if net carbon exchange at a low‐elevation, old‐growth forest is affected by climatic changes associated with these periodicities. Examined are the Pacific Decadal Oscillation (PDO), Pacific/North American Oscillation (PNA) and El Niño‐Southern Oscillation (ENSO). We use 9 years of eddy covariance CO2, H2O and energy fluxes measured at the Wind River AmeriFlux site, Washington, USA and 8 years of tower‐pixel remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to address this question. We compute a new Composite Climate Index (CCI) based on the three Pacific Oscillations to divide the measurement period into positive‐ (2003 and 2005), negative‐ (1999 and 2000) and neutral‐phase climate years (2001, 2002, 2004, 2006 and 2007). The forest transitioned from an annual net carbon sink (NEP=+217 g C m?2 yr?1, 1999) to a source (NEP=?100 g C m?2 yr?1, 2003) during two dominant teleconnection patterns. Net ecosystem productivity (NEP), water use efficiency (WUE) and light use efficiency (LUE) were significantly different (P<0.01) during positive (NEP=?0.27 g C m?2 day?1, WUE=4.1 mg C g?1 H2O, LUE=0.94 g C MJ?1) and negative (NEP=+0.37 g C m?2 day?1, WUE=3.4 mg C g?1 H2O, LUE=0.83 g C MJ?1) climate phases. The CCI was linked to variability in the MODIS Enhanced Vegetation Index (EVI) but not to MODIS Fraction of absorbed Photosynthetically Active Radiation (FPAR). EVI was highest during negative climate phases (1999 and 2000) and was positively correlated with NEP and showed potential for using MODIS to estimate teleconnection‐driven anomalies in ecosystem CO2 exchange in old‐growth forests. This work suggests that any increase in the strength or frequency of ENSO coinciding with in‐phase, low frequency Pacific oscillations (PDO and PNA) will likely increase CO2 uptake variability in Pacific Northwest conifer forests.  相似文献   

9.
Question: Are trees sensitive to climatic variability, and do tree species differ in their responses to climatic variability? Does sensitivity of forest communities to climatic variability depend on stand composition? Location: Mixed young forest at Walker Branch Watershed near Oak Ridge, East Tennessee, USA. Methods: Using a long‐term dataset (1967–2006), we analyzed temporal forest dynamics at the tree and species level, and community dynamics for forest stands that differed in initial species composition (i.e., chestnut oak, oak–hickory, pine, and yellow poplar stands). Using summer drought and growing season temperature as defined climate drivers, we evaluated relationships between forest dynamics and climate across levels of organization. Results: Over the four‐decade study period, forest communities underwent successional change and substantially increased in biomass. Variation in summer drought and growing season temperature contributed to temporal biomass dynamics for some tree species, but not for others. Stand‐level responses to climatic variability were related to the responses of component species, except in pine stands. Pinus echinata, the dominant species in pine stands, decreased over time due to periodic outbreaks of pine bark beetle (Dendroctonus frontalis). These outbreaks at Walker Branch could not be directly related to climatic conditions. Conclusions: The results indicate that sensitivity of developing forests to climatic variability is stand type‐dependent, and hence is a function of species composition. However, in the long term, direct effects of climatic variability on forest dynamics may be small relative to autogenic successional processes or climate‐related insect outbreaks. Empirical studies testing for interactions between forest succession and climatic variability are needed.  相似文献   

10.
Species compositional shifts have important consequences to biodiversity and ecosystem function and services to humanity. In boreal forests, compositional shifts from late‐successional conifers to early‐successional conifers and deciduous broadleaves have been postulated based on increased fire frequency associated with climate change truncating stand age‐dependent succession. However, little is known about how climate change has affected forest composition in the background between successive catastrophic fires in boreal forests. Using 1797 permanent sample plots from western boreal forests of Canada measured from 1958 to 2013, we show that after accounting for stand age‐dependent succession, the relative abundances of early‐successional deciduous broadleaves and early‐successional conifers have increased at the expense of late‐successional conifers with climate change. These background compositional shifts are persistent temporally, consistent across all forest stand ages and pervasive spatially across the region. Rising atmospheric CO2 promoted early‐successional conifers and deciduous broadleaves, and warming increased early‐successional conifers at the expense of late‐successional conifers, but compositional shifts were not associated with climate moisture index. Our results emphasize the importance of climate change on background compositional shifts in the boreal forest and suggest further compositional shifts as rising CO2 and warming will continue in the 21st century.  相似文献   

11.
Climate change has significantly influenced the productivity of terrestrial ecosystems through water cycles. Water use efficiency (WUE) is an important indicator for understanding how water couples with the carbon cycle. Abiotic factors such as climatic factors and CO2 concentration have been investigated to understand the mechanisms involved in the coupled carbon-water cycle of terrestrial ecosystems in response to climate change. However, the effects of biotic factors on WUE are less clear. By analyzing 66 site-years of flux and meteorological data obtained from 8 temperate deciduous broadleaf forest sites across North America and Europe, we found that ecosystem-scale WUE (defined here as the ratio of gross primary production (GPP) to evapotranspiration (ET)) in the spring significantly increased with the advance of the flux-based photosynthetic onset (FPO), mainly because an earlier FPO could lead to a steeper increase in GPP than in ET. However, the advance of FPO probably reduced summer WUE as a result of the enhancement of water stress by ET in the spring in temperate deciduous broadleaf forest. Our results also implied that spring warming had an indirectly positive effect on WUE through advancing spring phenology, but such a positive effect will likely weaken once the sensitivity of spring phenology to warming decreases as reported. Here, we argue that phenology, which exerts critical biotic control over most ecological processes, plays a larger role than expected in the regulation of the seasonal WUE and cannot be ignored in earth system models.  相似文献   

12.
At two forest sites in Germany (Pfaffenwinkel, Pustert) stocked with mature Scots pine (Pinus sylvestris L.), we investigated changes of topsoil chemistry during the recent 40 years by soil inventories conducted on replicated control plots of fertilization experiments, allowing a statistical analysis. Additionally, we monitored the nutritional status of both stands from 1964 until 2019 and quantified stand growth during the monitoring period by repeated stand inventories. Moreover, we monitored climate variables (air temperature and precipitation) and calculated annual climatic water balances from 1991 to 2019. Atmospheric nitrogen (N) and sulfur (S) deposition between 1964 and 2019 was estimated for the period 1969–2019 by combining annual deposition measurements conducted in 1985–1987 and 2004 with long‐term deposition records from long‐term forest monitoring stations. We investigated interrelations between topsoil chemistry, stand nutrition, stand growth, deposition, and climate trends. At both sites, the onset of the new millennium was a turning point of important biogeochemical processes. Topsoil acidification turned into re‐alkalinization, soil organic matter (SOM) accumulation stopped, and likely turned into SOM depletion. In the new millennium, topsoil stocks of S and plant‐available phosphorus (P) as well as S and P concentrations in Scots pine foliage decreased substantially; yet, age‐referenced stand growth remained at levels far above those expected from yield table data. Tree P and S nutrition as well as climate change (increased temperature and drought stress) have replaced soil acidification as major future challenges for both forests. Understanding of P and S cycling and water fluxes in forest ecosystems, and consideration of these issues in forest management is important for successfully tackling the new challenges. Our study illustrates the importance of long‐term forest monitoring to identify slow, but substantial changes of forest biogeochemistry driven by natural and anthropogenic global change.  相似文献   

13.
Expanding high‐elevation and high‐latitude forest has contrasting climate feedbacks through carbon sequestration (cooling) and reduced surface reflectance (warming), which are yet poorly quantified. Here, we present an empirically based projection of mountain birch forest expansion in south‐central Norway under climate change and absence of land use. Climate effects of carbon sequestration and albedo change are compared using four emission metrics. Forest expansion was modeled for a projected 2.6 °C increase in summer temperature in 2100, with associated reduced snow cover. We find that the current (year 2000) forest line of the region is circa 100 m lower than its climatic potential due to land‐use history. In the future scenarios, forest cover increased from 12% to 27% between 2000 and 2100, resulting in a 59% increase in biomass carbon storage and an albedo change from 0.46 to 0.30. Forest expansion in 2100 was behind its climatic potential, forest migration rates being the primary limiting factor. In 2100, the warming caused by lower albedo from expanding forest was 10 to 17 times stronger than the cooling effect from carbon sequestration for all emission metrics considered. Reduced snow cover further exacerbated the net warming feedback. The warming effect is considerably stronger than previously reported for boreal forest cover, because of the typically low biomass density in mountain forests and the large changes in albedo of snow‐covered tundra areas. The positive climate feedback of high‐latitude and high‐elevation expanding forests with seasonal snow cover exceeds those of afforestation at lower elevation, and calls for further attention of both modelers and empiricists. The inclusion and upscaling of these climate feedbacks from mountain forests into global models is warranted to assess the potential global impacts.  相似文献   

14.
Long‐term trends in ecosystem resource use efficiencies (RUEs) and their controlling factors are key pieces of information for understanding how an ecosystem responds to climate change. We used continuous eddy covariance and microclimate data over the period 1999–2017 from a 120‐year‐old black spruce stand in central Saskatchewan, Canada, to assess interannual variability, long‐term trends, and key controlling factors of gross ecosystem production (GEP) and the RUEs of carbon (CUE = net primary production [NPP]/GEP), light (LUE = GEP/absorbed photosynthetic radiation [APAR]), and water (WUE = GEP/evapotranspiration [E]). At this site, annual GEP has shown an increasing trend over the 19 years (p < 0.01), which may be attributed to rising atmospheric CO2 concentration. Interannual variability in GEP, aside from its increasing trend, was most strongly related to spring temperatures. Associated with the significant increase in annual GEP were relatively small changes in NPP, APAR, and E, so that annual CUE showed a decreasing trend and annual LUE and WUE showed increasing trends over the 19 years. The long‐term trends in the RUEs were related to the increasing CO2 concentration. Further analysis of detrended RUEs showed that their interannual variation was impacted most strongly by air temperature. Two‐factor linear models combining CO2 concentration and air temperature performed well (R2~0.60) in simulating annual RUEs. LUE and WUE were positively correlated both annually and seasonally, while LUE and CUE were mostly negatively correlated. Our results showed divergent long‐term trends among CUE, LUE, and WUE and highlighted the need to account for the combined effects of climatic controls and the ‘CO2 fertilization effect’ on long‐term variations in RUEs. Since most RUE‐based models rely primarily on one resource limitation, the observed patterns of relative change among the three RUEs may have important implications for RUE‐based modeling of C fluxes.  相似文献   

15.
Aim An understanding of the relationship between forest biomass and climate is needed to predict the impacts of climate change on carbon stores. Biomass patterns have been characterized at geographically or climatically restricted scales, making it unclear if biomass is limited by climate in any general way at continental to global scales. Using a dataset spanning multiple climatic regions we evaluate the generality of published biomass–climate correlations. We also combine metabolic theory and hydraulic limits to plant growth to first derive and then test predictions for how forest biomass should vary with maximum individual tree biomass and the ecosystem water deficit. Location Temperate forests and dry, moist and wet tropical forests across North, Central and South America. Methods A forest biomass model was derived from allometric functions and power‐law size distributions. Biomass and climate were correlated using extensive forest plot (276 0.1‐ha plots), wood density and climate datasets. Climate variables included mean annual temperature, annual precipitation, their ratio, precipitation of the driest quarter, potential and actual evapotranspiration, and the ecosystem water deficit. The water deficit uniquely summarizes water balance by integrating water inputs from precipitation with water losses due to solar energy. Results Climate generally explained little variation in forest biomass, and mixed support was found for published biomass–climate relationships. Our theory indicated that maximum individual biomass governs forest biomass and is constrained by water deficit. Indeed, forest biomass was tightly coupled to maximum individual biomass and the upper bound of maximum individual biomass declined steeply with water deficit. Water deficit similarly constrained the upper bound of forest biomass, with most forests below the constraint. Main conclusions The results suggest that: (1) biomass–climate models developed at restricted geographic/climatic scales may not hold at broader scales; (2) maximum individual biomass is strongly related to forest biomass, suggesting that process‐based models should focus on maximum individual biomass; (3) the ecosystem water deficit constrains biomass, but realized biomass often falls below the constraint; such that (4) biomass is not strongly limited by climate in most forests so that forest biomass may not predictably respond to changes in mean climate.  相似文献   

16.
Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here, we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species‐specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured interannual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including aboveground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model‐data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate.  相似文献   

17.
Forest performance is challenged by climate change but higher atmospheric [CO2] (ca) could help trees mitigate the negative effect of enhanced water stress. Forest projections using data assimilation with mechanistic models are a valuable tool to assess forest performance. Firstly, we used dendrochronological data from 12 Mediterranean tree species (six conifers and six broadleaves) to calibrate a process‐based vegetation model at 77 sites. Secondly, we conducted simulations of gross primary production (GPP) and radial growth using an ensemble of climate projections for the period 2010–2100 for the high‐emission RCP8.5 and low‐emission RCP2.6 scenarios. GPP and growth projections were simulated using climatic data from the two RCPs combined with (i) expected ca; (ii) constant ca = 390 ppm, to test a purely climate‐driven performance excluding compensation from carbon fertilization. The model accurately mimicked the growth trends since the 1950s when, despite increasing ca, enhanced evaporative demands precluded a global net positive effect on growth. Modeled annual growth and GPP showed similar long‐term trends. Under RCP2.6 (i.e., temperatures below +2 °C with respect to preindustrial values), the forests showed resistance to future climate (as expressed by non‐negative trends in growth and GPP) except for some coniferous sites. Using exponentially growing ca and climate as from RCP8.5, carbon fertilization overrode the negative effect of the highly constraining climatic conditions under that scenario. This effect was particularly evident above 500 ppm (which is already over +2 °C), which seems unrealistic and likely reflects model miss‐performance at high ca above the calibration range. Thus, forest projections under RCP8.5 preventing carbon fertilization displayed very negative forest performance at the regional scale. This suggests that most of western Mediterranean forests would successfully acclimate to the coldest climate change scenario but be vulnerable to a climate warmer than +2 °C unless the trees developed an exaggerated fertilization response to [CO2].  相似文献   

18.
Temperate forest soil organic carbon (C) represents a significant pool of terrestrial C that may be released to the atmosphere as CO2 with predicted changes in climate. To address potential feedbacks between climate change and terrestrial C turnover, we quantified forest soil C response to litter type and temperature change as a function of soil parent material. We collected soils from three conifer forests dominated by ponderosa pine (PP; Pinus ponderosa Laws.); white fir [WF; Abies concolor (Gord. and Glend.) Lindl.]; and red fir (RF; Abies magnifica A. Murr.) from each of three parent materials, granite (GR), basalt (BS), and andesite (AN) in the Sierra Nevada of California. Field soils were incubated at their mean annual soil temperature (MAST), with addition of native 13C‐labeled litter to characterize soil C mineralization under native climate conditions. Further, we incubated WF soils at PP MAST with 13C‐labeled PP litter, and RF soils at WF MAST with 13C‐labeled WF litter to simulate a migration of MAST and litter type, and associated change in litter quality, up‐elevation in response to predicted climate warming. Results indicated that total CO2 and percent of CO2 derived from soil C varied significantly by parent material, following the pattern of GR>BS>AN. Regression analyses indicated interactive control of C mineralization by litter type and soil minerals. Soils with high short‐range‐order (SRO) mineral content exhibited little response to varying litter type, whereas PP litter enriched in acid‐soluble components promoted a substantial increase of extant soil C mineralization in soils of low SRO mineral content. Climate change conditions increased soil C mineralization greater than 200% in WF forest soils. In contrast, little to no change in soil C mineralization was noted for the RF forest soils, suggesting an ecosystem‐specific climate change response. The climate change response varied by parent material, where AN soils exhibited minimal change and GR and BS soils mineralized substantially greater soil C. This study corroborates the varied response in soil C mineralization by parent material and highlights how the soil mineral assemblage and litter type may interact to control conifer forest soil C response to climate change.  相似文献   

19.
Natural disturbances like wildfire, windthrow and insect outbreaks are critical drivers of composition, structure and functioning of forest ecosystems. They are strongly climate‐sensitive, and are thus likely to be distinctly affected by climatic changes. Observations across Europe show that in recent decades, forest disturbance regimes have intensified markedly, resulting in a strong increase in damage from wind, bark beetles and wildfires. Climate change is frequently hypothesized as the main driving force behind this intensification, but changes in forest structure and composition associated with management activities such as promoting conifers and increasing standing timber volume (i.e. ‘forest change’) also strongly influence susceptibility to disturbances. Here, we show that from 1958 to 2001, forest change contributed in the same order of magnitude as climate change to the increase in disturbance damage in Europe's forests. Climate change was the main driver of the increase in area burnt, while changes in forest extent, structure and composition particularly affected the variation in wind and bark beetle damage. For all three disturbance agents, damage was most severe when conducive weather conditions and increased forest susceptibility coincided. We conclude that a continuing trend towards more disturbance‐prone conditions is likely for large parts of Europe's forests, and can have strong detrimental effects on forest carbon storage and other ecosystem services. Understanding the interacting drivers of natural disturbance regimes is thus a prerequisite for climate change mitigation and adaptation in forest ecosystem management.  相似文献   

20.
The responses of forest communities to interacting anthropogenic disturbances like climate change and logging are poorly known. Subtropical forests have been heavily modified by humans and their response to climate change is poorly understood. We investigated the 9‐year change observed in a mixed conifer‐hardwood Atlantic forest mosaic that included both mature and selectively logged forest patches in subtropical South America. We used demographic monitoring data within 10 1 ha plots that were subjected to distinct management histories (plots logged until 1955, until 1987, and unlogged) to test the hypothesis that climate change affected forest structure and dynamics differentially depending on past disturbances. We determined the functional group of all species based on life‐history affinities as well as many functional traits like leaf size, specific leaf area, wood density, total height, stem slenderness, and seed size data for the 66 most abundant species. Analysis of climate data revealed that minimum temperatures and rainfall have been increasing in the last few decades of the 20th century. Floristic composition differed mainly with logging history categories, with only minor change over the nine annual census intervals. Aboveground biomass increased in all plots, but increases were higher in mature unlogged forests, which showed signs of forest growth associated with increased CO2, temperature, and rainfall/treefall gap disturbance at the same time. Logged forests showed arrested succession as indicated by reduced abundances of Pioneers and biomass‐accumulators like Large Seeded Pioneers and Araucaria, as well as reduced functional diversity. Management actions aimed at creating regeneration opportunities for long‐lived pioneers are needed to restore community functional diversity, and ecosystem services such as increased aboveground biomass accumulation. We conclude that the effects of climate drivers on the dynamics of Brazilian mixed Atlantic forests vary with land‐use legacies, and can differ importantly from the ones prevalent in better known tropical forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号