首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In wing‐polymorphic insects, wing morphs differ not only in dispersal capability but also in life history traits because of trade‐offs between flight capability and reproduction. When the fitness benefits and costs of producing wings differ between males and females, sex‐specific trade‐offs can result in sex differences in the frequency of long‐winged individuals. Furthermore, the social environment during development affects sex differences in wing development, but few empirical tests of this phenomenon have been performed to date. Here, I used the wing‐dimorphic water strider Tenagogerris euphrosyne to test how rearing density and sex ratio affect the sex‐specific development of long‐winged dispersing morphs (i.e., sex‐specific macroptery). I also used a full‐sib, split‐family breeding design to assess genetic effects on density‐dependent, sex‐specific macroptery. I reared water strider nymphs at either high or low densities and measured their wing development. I found that long‐winged morphs developed more frequently in males than in females when individuals were reared in a high‐density environment. However, the frequency of long‐winged morphs was not biased according to sex when individuals were reared in a low‐density environment. In addition, full‐sib males and females showed similar macroptery incidence rates at low nymphal density, whereas the macroptery incidence rates differed between full‐sib males and females at high nymphal density. Thus complex gene‐by‐environment‐by‐sex interactions may explain the density‐specific levels of sex bias in macroptery, although this interpretation should be treated with some caution. Overall, my study provides empirical evidence for density‐specific, sex‐biased wing development. My findings suggest that social factors as well as abiotic factors can be important in determining sex‐biased wing development in insects.  相似文献   

2.
Abstract: Overproduction of male parasitoids during mass rearing will increase costs for biological control because wasp shipments contain fewer females and only females kill hosts directly. We have developed a rearing technique capable of significantly reducing male‐biased sex ratios in Diglyphus isaea (Walker) (Hym., Eulophidae), a commercially reared parasitoid of agromyzid leafminers. In this study, we examined the effect of rearing technique on the efficacy of D. isaea for biological control of Liriomyza langei Frick (Dip., Agromyzidae) on chrysanthemum, Dendranthema grandiflora Tzvelev var. ‘Miramar’. We produced D. isaea on mixtures of small and large hosts (our modified technique) or on only large hosts (simulating commercial mass‐rearing) and compared: (1) control of L. langei with D. isaea produced by the two rearing techniques, and (2) damage and yield of unprotected and protected plants. The two rearing techniques produced similar numbers of waSPS per rearing cohort, but the ‘modified’ technique reduced the proportion of males by approximately 13%. The two techniques also produced females of similar size, but the ‘modified’ technique produced smaller males. In greenhouse trials simulating leafminer infestations of potted chrysanthemums during commercial production, we found no significant differences between the levels of control obtained by releasing identical numbers and sex ratios of adult waSPS produced by either rearing technique. Mine counts on plants protected by waSPS of either rearing history were similar and around 30–70% less than unprotected plants during most of the 11‐week crop cycle. At crop harvest, more than half of the foliage on protected plants was undamaged compared with <10% on unprotected crops. Damage to the flower stems of protected plants was relatively light in the top half of the canopy compared with the bottom half. Protected plants were around 10–15% taller and produced twice as many flower buds compared with unprotected plants. Our ‘modified’ rearing technique can reduce overproduction of males in D. isaea with no compromise in biological control efficacy. Adoption of our rearing technique by commercial insectaries could reduce implementation costs for not only D. isaea but also other parasitoids that show host‐size‐dependent sex allocation.  相似文献   

3.
Age‐related patterns of survival and reproduction have been explained by accumulated experience (‘experience hypothesis’), increased effort (‘effort hypothesis’), and intrinsic differences in phenotypes (‘selection hypothesis’). We examined the experience and effort hypotheses using a 40‐year data set in a population of Leach's storm‐petrels Oceanodroma leucorhoa, long‐lived seabirds for which the effect of phenotypic variation has been previously demonstrated. Age was quantified by time since recruitment (‘breeding age’). The best model of adult survival included a positive effect of breeding age (1, 2, 3+ years), sex (male > female), and year. Among‐individuals variation (fixed heterogeneity) accounted for 31.6% of the variance in annual reproductive success. We further examined within‐individual patterns in reproductive success (dynamic heterogeneity) in the subset of individuals with at least five breeding attempts. Three distinct phases characterized reproductive success – early increase, long asymptotic peak, late decline. No effect of early reproductive output on longevity was found, however, early success was positively correlated with lifetime reproductive success. Reproductive success was lower earlier than later in life. Among the few natally philopatric individuals in the population, age of first breeding had no effect on longevity, lifetime reproductive success, or early reproductive success. No support for the effort hypothesis was found in this population. Instead, age‐specific patterns of survival and reproduction in these birds are best explained by the experience hypothesis over and above the effect of intrinsic differences among individuals.  相似文献   

4.
Several non‐mutually exclusive hypotheses predict adaptive variation in the offspring sex ratio. When conditions for breeding are adverse, parents are predicted to produce more offspring of the less costly sex to rear (‘the cost‐of‐reproduction hypothesis’). Moreover, they also should produce the more dispersing sex in order to diminish future competition (‘the local‐resource‐competition hypothesis’). Here, we analyse brood sex ratio according to rearing conditions in the southern shrike Lanius meridionalis, a species with moderately reversed sexual dimorphism. Our results suggest that females are more costly to rear than males in this species. Adult females proved heavier than males, and female nestling tended to be heavier than male nestlings. Moreover, the greater brood reduction, the more male‐biased was the brood, suggesting that brood reduction implied higher mortality in female nestlings. Consistent with these findings, the brood sex ratio was biased to the less costly sex (males) when breeding conditions were adverse (bad years or low‐quality male parents), supporting the cost‐of‐reproduction hypothesis. By contrast, these findings did not support the local‐resource‐competition hypothesis, which predicted female‐biased brood sex ratio under adverse conditions. As a whole, our results support the idea that birds adaptively modulate sex ratio in order to minimize reproduction costs.  相似文献   

5.
Hanski's critique of the habitat amount hypothesis (Hanski, 2015, Journal of Biogeography, 42 , 989–993) does not actually constitute a test of the hypothesis, but rather a series of arguments for why he suspects that it is not correct. But the habitat amount hypothesis is exactly that – a hypothesis. It will remain ‘just’ a hypothesis until it has been rigorously tested against empirical data. To facilitate such testing, in Fahrig (2013, Journal of Biogeography, 40 , 1649–1663) I presented specific, testable predictions of the hypothesis. Here, I reiterate the main tests needed, in the hope that some readers will be encouraged to carry them out. I appreciate this opportunity to emphasize that the habitat amount hypothesis needs to be tested against empirical data, and I look forward to seeing the results of such tests.  相似文献   

6.
Abstract 1. The possible effect of juvenile imprinting or ‘chemical legacy’ on the subsequent oviposition – often called the ‘Hopkins’ host selection principle’– has been a controversial but recurrent theme in the literature on host‐plant preference. While it appears possible in principle, experimental support for the hypothesis is equivocal. The present study points out that it is also important to consider its theoretical implications, and asks under what circumstances, if any, it should be favoured by natural selection. 2. Following this reasoning, it is predicted that host preference in the polyphagous butterfly Polygonia c‐album L. (Lepidoptera, Nymphalidae) should not be influenced by larval environment. This was tested by rearing larvae on three natural host plants: the high‐ranked Urtica dioica and the medium‐ranked Salix cinerea and Ribes uva‐crispa, and exposing the naive females to oviposition choices involving the same set of plants. 3. It was found that larval host plant had no effect on oviposition decisions of the adult female. Hence, the Hopkins’ host selection principle does not seem to be applicable in this species. 4. Based on recent insights on how accuracy of environmental versus genetic information should affect the control of developmental switches, the conditions that could favour the use of juvenile cues in oviposition decisions are discussed. Although the Hopkins’ host selection hypothesis cannot be completely ruled out, we argue that the circumstances required for it to be adaptive are so specific that it should not be invoked as a general hypothesis for host selection in plant‐feeding insects.  相似文献   

7.
Dispersal patterns are important in metapopulation ecology because they affect the dynamics and survival of populations. However, because little empirical information exists on dispersal behaviour of individuals, theoretical models usually assume random dispersal. Recent empirical evidence, by contrast, suggests that the butterfly Maniola jurtina uses a non‐random, systematic dispersal strategy, can detect and orient towards habitat from distances of 100–150 m, and prefers a familiar habitat patch over a non‐familiar one (‘homing behaviour’). The present study (1) investigated whether these results generalise to another butterfly species, Pyronia tithonus; and (2) examined the cause of the observed ‘homing behaviour’ in M. jurtina. P. tithonus used a similar non‐random, systematic dispersal strategy to M. jurtina, had a similar perceptual range for habitat detection and preferred a familiar habitat patch over a non‐familiar one. The ‘homing behaviour’ of M. jurtina was found to be context‐dependent: individual M. jurtina translocated within habitat did not return towards their capture point, whereas individuals translocated similar distances out of habitat did return to their ‘home’ patch. We conclude that butterfly ‘homing behaviour’ is not based on an inherent preference for a familiar location, but that familiarity with an area facilitates the recognition of suitable habitat, towards which individuals orient if they find themselves in unsuitable habitat. Contrary to conventional wisdom, we suggest that frequent, short ‘excursions’ over habitat patch boundaries are evolutionarily advantageous to individuals, because increased familiarity with the surrounding environment is likely to increase the ability of a straying animal to return to its natural habitat, and to reduce the rate of mortality experienced by individuals attempting to disperse between habitat patches. We discuss the implications of the non‐random dispersal for existing metapopulation models, including models of the evolution of dispersal rates.  相似文献   

8.
9.
Microbats perform important ecological services in agro‐ecosystems, but several species are globally threatened by loss of roosting and breeding habitats. The successful conservation of bats in agricultural land requires adequate knowledge of their ecology. Using ultrasonic recorders, we studied the activity of insectivorous bats in areas of macadamia production in eastern Australia at two spatial scales: across woodland‐orchard transects at the local scale and across three levels of fragmentation at the landscape scale. At the local scale, activity patterns of ‘clutter’ and ‘edge’ specialists were consistently higher in woodland patches, gradually decreasing towards isolated orchards, where only a few ‘open’ specialists were active. At the landscape scale, bat community activity was affected by the level of fragmentation, partly because three of the most recorded taxa (Austronomus australis, Saccolaimus flaviventris and Miniopterus australis) had their highest activity in less‐fragmented areas. A distance‐based model explained 24% of the bat community activity based on a combination of six environmental variables. Canonical correspondence analysis showed that a number of bat taxa were associated with open areas of macadamia, whereas other taxa were associated with increasing values of landscape composition, and arthropod and water availability. In addition, total bat activity was highly correlated with foraging rate. These results suggest that most bat taxa were influenced by proximity to woodland and the degree of fragmentation, and only few taxa were able to exploit isolated orchards. Environmental factors that promote bat activity could be exploited to strengthen conservation efforts. Preserving remnant woodland and promoting habitat heterogeneity will benefit several bat species. In particular, the foraging activity of ‘edge’ specialists could be fostered by increasing landscape connectivity and maintaining unobstructed water bodies near macadamia orchards. Considering that bats forage as they navigate these areas, conservation efforts could also bring benefits to farmers through pest‐reduction services.  相似文献   

10.
Evolutionary theory predicts that parents should invest equally in the two sexes. If one sex is more costly, a production bias is predicted in favour of the other. Two well‐studied causes of differential costs are size dimorphism, in which the larger sex should be more costly, and sex‐biased helping in cooperative breeders, in which the more helpful sex should be less costly because future helping “repays” some of its parents’ investment. We studied a bird species in which both processes should favor production of males. Female riflemen Acanthisitta chloris are larger than males, and we documented greater provisioning effort in more female‐biased broods indicating they are likely costlier to raise. Riflemen are also cooperative breeders, and males provide more help than females. Contrary to expectations, we observed no male bias in brood sex ratios, which did not differ significantly from parity. We tested whether the lack of a population‐wide pattern was a result of facultative sex allocation by individual females, but this hypothesis was not supported either. Our results show an absence of adaptive patterns despite a clear directional hypothesis derived from theory. This appears to be associated with a suboptimal female‐biased investment ratio. We conclude that predictions of adaptive sex allocation may falter because of mechanistic constraint, unrecognized costs and benefits, or weak selection.  相似文献   

11.
Using a set of cranial morphometric characters, trends of variation in multivariate fluctuating asymmetry were evaluated and compared in populations of African fruit bats Rousettus egyptiacus and Eidolon helvum from the Gulf of Guinea islands, and the adjacent mainland. Levels of asymmetry were compared across populations and species, and significant differences were found in both comparisons. Differences coincided with species‐specific patterns of morphological and genetic differentiation. Concordance of correlation matrices of asymmetry was also compared. Results were significant; concordance is hypothesized to be a by‐product of developmental processes that produce the ‘fox‐like’ morphology shared by these species. Consistency of asymmetry patterns suggests that the developmental pathway producing it is highly canalized. A prediction of the above hypothesis is that a radical change in the ‘fox‐like’ structural pattern would result in breakage of the asymmetry parameter associated with it.  相似文献   

12.
Molecular gut‐content analysis enables detection of arthropod predation with minimal disruption of ecosystem processes. Mass‐collection methods, such as sweep‐netting, vacuum sampling and foliage beating, could lead to regurgitation or rupturing of predators along with uneaten prey, thereby contaminating specimens and compromising resultant gut‐content data. Proponents of this ‘cross‐contamination hypothesis’ advocate hand‐collection as the best way to avoid cross‐contamination. However, hand‐collection is inefficient when large samples are needed, as with most ecological research. We tested the cross‐contamination hypothesis by setting out onto potato plants immature Coleomegilla maculata and Podisus maculiventris that had been fed larvae of either Leptinotarsa decemlineata or Leptinotarsa juncta, or unfed individuals of these predator species along with L. decemlineata larvae. The animals were then immediately re‐collected, either by knocking them vigorously off the plants onto a beat cloth and capturing them en masse with an aspirator (‘rough’ treatment) or by hand‐searching and collection with a brush (‘best practice’). Collected predators were transferred in the field to individual vials of chilled ethanol and subsequently assayed by PCR for fragments of cytochrome oxidase I of L. decemlineata and L. juncta. Ten to 39 per cent of re‐collected fed predators tested positive by PCR for DNA of both Leptinotarsa species, and 14–38% of re‐collected unfed predators contained L. decemlineata DNA. Overall levels of cross‐contamination in the rough (31%) and best‐practice (11%) samples were statistically different and supported the cross‐contamination hypothesis. A pilot study on eliminating external DNA contamination with bleach prior to DNA extraction and amplification gave promising results.  相似文献   

13.
Optimality models for evolution of life histories have shown that increased environmental stochasticity promotes early age of maturity. Here we argue that if r‐selection for early maturation implies a tradeoff making those phenotypes more sensitive to a change in population size than phenotypes maturing at older ages, K‐selection can favor delayed onset of maturation. We analyze a general stochastic Leslie‐matrix model with a simplified density regulation affecting all survivals equally through a function of the population vector, often called the ‘critical age class’. We show that the outcome of such an age‐dependent r‐ and K‐selection is that the expected value of the ‘critical age class’ is maximized by evolution, a strategy strongly influenced by the magnitude of the environmental stochasticity. We also demonstrate that evolution caused by such density‐dependent selection influences the population dynamics, showing a possible reciprocal effect between ecology and evolution in age‐structured populations. This modeling approach reveals that changes in population size affecting the fitness of phenotypes with different age of maturity may be an important selective agent for variation in onset of reproduction in fluctuating environments. This provides a testable hypothesis for how patterns in the population dynamics should affect life history variation.  相似文献   

14.
Aim The downstream hydrochoric spread of seeds of aquatic and riparian plant species, without upstream compensation, can be expected to result in downstream accumulation of population genetic diversity. This idea has been termed the ‘unidirectional dispersal hypothesis’ and is the genetic equivalent of the more generally known ‘drift paradox’. Our aim was to test this unidirectional diversity hypothesis, and to present a general synthesis of the patterns of population genetic variation across different riparian and aquatic plant species along rivers. Location The Meuse River (Belgium) and rivers world‐wide. Methods First, we used amplified fragment length polymorphism markers to compare patterns of within‐ and between‐population genetic diversity among three riparian plant species (Sisymbrium austriacum, Erysimum cheiranthoides and Rorippa sylvestris), typically occurring in different habitats along a gradient perpendicular to the Meuse River. Second, we performed a meta‐analysis on studies reporting on the population genetic structure of riparian and aquatic plant species along rivers. Results Along the Meuse River, we found significant genetic differentiation among populations of all three riparian species, and significant isolation by distance for one of them (R. sylvestris). There was no clear association between the typical habitat of a species and its population genetic structure. None of the three species provided evidence for the unidirectional dispersal hypothesis. The meta‐analysis, based on 21 data records, did not support the unidirectional dispersal hypothesis either. Average weighted population genetic differentiation across species was significant. Main conclusions Important mechanisms of upstream seed dispersal, probably through zoochory, together with higher seed recruitment opportunities in upstream habitats due to density dependence of recruitment, may explain the absence of downstream accumulation of genetic diversity. Also, it seems difficult to find consistent patterns in genetic variation in species from aquatic and riparian habitats. We argue that this is due to the recurrent extinctions and colonizations characteristic of these habitats, resulting in complex genetic patterns. Our results strongly support previous suggestions that stream ecology should consistently embrace metapopulation theory to be able to understand patterns of genetic diversity, as well as species diversity.  相似文献   

15.
Abstract

Den sharing among wild brushtail possums (Trichosurus vulpecula) has important implications for disease transmission. This study investigated den sharing in captive possums, and measured interactions between possums sharing dens. Thirty‐four sexually mature possums (16 female, 18 male) were housed in single‐sex or mixed‐sex pairs in large enclosures that contained two dens. Daily patterns of den sharing were recorded for each pair over a 69 day period in the breeding or non‐breeding season. Social behaviour within shared dens was sampled using miniature infrared cameras. Male pairs rarely shared dens in the breeding or non‐breeding seasons (4% and 1% of days respectively) and usually engaged in ‘threats’ and ‘fights’ associated with den defence. Pairs of female possums (in both seasons) and mixed‐sex pairs housed together in the breeding season shared dens most frequently (between 84% and 91% of days), and also spent the most time together in dens each night. While sharing dens, affiliative interactions were frequent, including long periods of ‘touching’, and also ‘food sharing’ and ‘allogrooming’. The preference for den sharing and close contact shown by captive possums highlights the importance of den sharing as a potential route for disease transmission.  相似文献   

16.
Sex allocation theory has been a remarkably productive field in behavioral ecology with empirical evidence regularly supporting quantitative theoretical predictions. Across mammals in general and primates in particular, however, support for the various hypotheses has been more equivocal. Population‐level sex ratio biases have often been interpreted as supportive, but evidence for small‐scale facultative adjustment has rarely been found. The helper repayment (HR) also named the local resource enhancement (LRE) hypothesis predicts that, in cooperatively breeding species, mothers invest more in the sex which assists with rearing future offspring and that this bias will be more pronounced in mothers who require extra assistance (i.e., due to inexperience or a lack of available alloparents). We tested these hypotheses in captive cotton‐top tamarins (Saguinus oedipus) utilizing the international studbook and birth records obtained through a questionnaire from ISIS‐registered institutions. Infant sex, litter size, mother's age, parity, and group composition (presence of nonreproductive subordinate males and females) were determined from these records. The HR hypothesis was supported over the entire population, which was significantly biased toward males (the “helpful” sex). We found little support for helper repayment at the individual level, as primiparous females and those in groups without alloparents did not exhibit more extreme tendencies to produce male infants. Primiparous females were, however, more likely to produce singleton litters. Singleton births were more likely to be male, which suggests that there may be an interaction between litter size adjustment and sex allocation. This may be interpreted as supportive of the HR hypothesis, but alternative explanations at both the proximate and ultimate levels are possible. These possibilities warrant further consideration when attempting to understand the ambiguous results of primate sex ratio studies so far.  相似文献   

17.
Male sex‐biased parasitism (SBP) occurs across a range of mammalian taxa and two contrasting sets of hypotheses have been suggested for its establishment. The first invokes body size per se and suggests that larger individuals are either a larger target for parasites, trade off growth at the expense of immunity or cope better with parasitism than smaller individuals. The second suggests a sex‐specific handicap whereby males have reduced immunocompetence compared to females due to the immunodepressive effects of testosterone. The current study investigated whether sex‐biased parasitism is driven by host ‘body size’ or ‘sex’ using a rodent–tick (Apodemus sylvaticusIxodes ricinus) system. Moreover, the presence or absence of large mammals at study sites were used to control the presence of immature ticks infesting wood mice, allowing the impacts of parasitism on host body mass and female reproduction to be assessed. As expected, male mice had greater tick loads than females and analyses suggested this sex‐bias was driven by body mass as opposed to sex. It is therefore likely that larger individuals are a larger target for parasites, trade off growth at the expense of immunity or adapt behavioural responses to parasitism based on their body size. Parasite load had no effect on host body mass or female reproductive output suggesting individuals may alter behaviour or life history strategies to compensate for costs incurred through parasitism. Overall, this study lends support to the ‘body size’ hypothesis for the formation of sex‐biased parasitism.  相似文献   

18.
I examined the potential influence of climate change on the dynamics of a previously studied hybrid zone between a pair of terrestrial salamanders at the Coweeta Hydrologic Laboratory, U.S. Forest Service, in the Nantahala Mountains of North Carolina, USA. A 16‐year study led by Nelson G. Hairston, Sr. revealed that Plethodon teyahalee and Plethodon shermani hybridized at intermediate elevations, forming a cline between ‘pure’ parental P. teyahalee at lower elevations and ‘pure’ parental P. shermani at higher elevations. From 1974 to 1990 the proportion of salamanders at the higher elevation scored as ‘pure’P. shermani declined significantly, indicating that the hybrid zone was spreading upward. To date there have been no rigorous tests of hypotheses for the movement of this hybrid zone. Using temperature and precipitation data from Coweeta, I re‐analyzed Hairston's data to examine whether the observed elevational shift was correlated with variation in either air temperature or precipitation from the same time period. For temperature, my analysis tracked the results of the original study: the proportion of ‘pure’P. shermani at the higher elevation declined significantly with increasing mean annual temperature, whereas the proportion of ‘pure’P. teyahalee at lower elevations did not. There was no discernable relationship between proportions of ‘pure’ individuals of either species with variation in precipitation. From 1974 to 1990, low‐elevation air temperatures at the Coweeta Laboratory ranged from annual means of 11.8 to 14.2 °C, compared with a 55‐year average (1936–1990) of 12.6 °C. My re‐analyses indicate that the upward spread of the hybrid zone is correlated with increasing air temperatures, but not precipitation, and provide an empirical test of a hypothesis for one factor that may have influenced this movement. My results aid in understanding the potential impact that climate change may have on the ecology and evolution of terrestrial salamanders in montane regions.  相似文献   

19.
To compete over limited parental resources, young animals communicate with their parents and siblings by producing honest vocal signals of need. Components of begging calls that are sensitive to food deprivation may honestly signal need, whereas other components may be associated with individual‐specific attributes that do not change with time such as identity, sex, absolute age and hierarchy. In a sib–sib communication system where barn owl (Tyto alba) nestlings vocally negotiate priority access to food resources, we show that calls have individual signatures that are used by nestlings to recognize which siblings are motivated to compete, even if most vocalization features vary with hunger level. Nestlings were more identifiable when food‐deprived than food‐satiated, suggesting that vocal identity is emphasized when the benefit of winning a vocal contest is higher. In broods where siblings interact iteratively, we speculate that individual‐specific signature permits siblings to verify that the most vocal individual in the absence of parents is the one that indeed perceived the food brought by parents. Individual recognition may also allow nestlings to associate identity with individual‐specific characteristics such as position in the within‐brood dominance hierarchy. Calls indeed revealed age hierarchy and to a lower extent sex and absolute age. Using a cross‐fostering experimental design, we show that most acoustic features were related to the nest of origin (but not the nest of rearing), suggesting a genetic or an early developmental effect on the ontogeny of vocal signatures. To conclude, our study suggests that sibling competition has promoted the evolution of vocal behaviours that signal not only hunger level but also intrinsic individual characteristics such as identity, family, sex and age.  相似文献   

20.
The link between variation in species‐specific plant traits, larger scale patterns of productivity, and other ecosystem processes is an important focus for global change research. Understanding such linkages requires synthesis of evolutionary, biogeograpahic, and biogeochemical approaches to ecological research. Recent observations reveal several apparently paradoxical patterns across ecosystems. When compared with warmer low latitudes, ecosystems from cold northerly latitudes are described by (1) a greater temperature normalized instantaneous flux of CO2 and energy; and (2) similar annual values of gross primary production (GPP), and possibly net primary production. Recently, several authors attributed constancy in GPP to historical and abiotic factors. Here, we show that metabolic scaling theory can be used to provide an alternative ‘biotically driven’ hypothesis. The model provides a baseline for understanding how potentially adaptive variation in plant size and traits associated with metabolism and biomass production in differing biomes can influence whole‐ecosystem processes. The implication is that one cannot extrapolate leaf/lab/forest level functional responses to the globe without considering evolutionary and geographic variation in traits associated with metabolism. We test one key implication of this model – that directional and adaptive changes in metabolic and stoichiometric traits of autotrophs may mediate patterns of plant growth across broad temperature gradients. In support of our model, on average, mass‐corrected whole‐plant growth rates are not related to differences in growing season temperature or latitude. Further, we show how these changes in autotrophic physiology and nutrient content across gradients may have important implications for understanding: (i) the origin of paradoxical ecosystem behavior; (ii) the potential efficiency of whole‐ecosystem carbon dynamics as measured by the quotient of system capacities for respiration, R, and assimilation, A; and (iii) the origin of several ‘ecosystem constants’– attributes of ecological systems that apparently do not vary with temperature (and thus with latitude). Together, these results highlight the potential critical importance of community ecology and functional evolutionary/physiological ecology for understanding the role of the biosphere within the integrated earth system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号