首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fluorescent sensor, 5, based upon the sugar-aza-crown ether structure with two anthracenetriazolymethyl groups was prepared and its fluoroionophoric properties toward transition metal ions were investigated. In methanol, the sensor exhibits highly selective recognition of Cu2+ and Hg2+ ions among a series of tested metal ions. The association constant for Cu2+ and Hg2+ in methanol was calculated to be 4.0 × 105 M−1 and 1.1 × 105 M−1, respectively. The detection limits for the sensing of Cu2+ and Hg2+ ions were 1.39 × 10−6 M and 1.39 × 10−5 M, respectively.  相似文献   

2.
Ion chromatography followed by microwave-induced acid digestion was used to evaluate the serum levels of Fe3+, Cu2+, Ni2+, Zn2+, and Mn2+ in patients with diagnosed type 2 diabetes and in healthy controls. Recoveries ranged from 98.0% to 102% for Fe3+, from 89.9% to 100% for Cu2+, from 87.9% to 102% for Zn2+, and from 89.6% to 102% for Mn2+ were determined by examining samples spiked with various amounts of all the studied ions. The time of mineralization longer than 28 min did not affect the assay values. Precision was assessed at four unique concentrations in replicates of six, on four separate occasions. RSD was determined to be 1.16% for Fe3+, 5.20% for Cu2+, 2.8% for Zn2+, and 3.75% for Mn2+. The accuracy results (values of RSD) were as follows: 5.16% for Fe3+, 6.35% for Cu2+, 4.9% for Zn2+, and 7.23% for Mn2+.The statistical analysis confirmed that mean concentrations of Fe3+ and Zn2+ did not differ significantly from analogous values in the control group. Patients who additionally suffered from hypertension had higher copper concentrations compared with diabetic patients. For diabetics the presence of Mn2+ was not stated (LOD values amounting to 0.006 μg/mL). Ni2+ was not detectable for either the studied group or the control group (LOD=0.006 μg/mL).  相似文献   

3.
Effects of six divalent metal cations: Fe2+, Ca2+, Zn2+, Mg2+, Cu2+and Mn2+ on fungal cell growth and lovastatin biosynthesis were investigated by submerged cultivation of Aspergillus terreus in a modified chemically defined medium. The influences of different initial concentrations of the above six metal cations were also examined at 1, 2, and 5 mM, respectively. Cu2+ apparently inhibited the cell growth, but had no influence on biosynthesis of lovastatin. All of Fe2+, Ca2+, Zn2+, Mg2+ and Mn2+ promoted the cell growth and lovastatin biosynthesis in different extents. The highest biomass of 13.8 ± 0.5 g l−1 and specific lovastatin titres of 49.2 ± 1.4 mg gDCW−1 were obtained at the level of 2 and 5 mM in the presence of Zn2+, respectively. The values were improved double and 14.4-fold. Excess Zn2+ inhibited the cell growth, but enhanced lovastatin biosynthesis with an increment of 17.6 mg l−1 per mM. The interactions of all metal cations slightly inhibited the lovastatin production comparing with the existence of Zn2+, Fe2+ and Mg2+ solely, yet remarkably improved the cell growth. These results suggest that the divalent metal ions Zn2+ or Fe2+ influence the production by regulating the action of key enzymes such as LovD or LovF in lovastatin biosynthesis.  相似文献   

4.
In this study, a solid-phase extraction method combined with atomic absorption spectrometry for extraction, preconcentration, and determination of iron (Fe3+), copper (Cu2+), and lead (Pb2+) ions at trace levels in water samples has been reported. The influences of effective parameters such as flow rate, pH, eluent conditions (type, volume, and concentration), sample volumes, and interference of matrix ions on metal ions recoveries were studied. Under optimized conditions, the limits of detection were found in the range of 0.7–2.2 μg L−1, while preconcentration factors for Fe3+, Cu2+, and Pb2+ ions were found to be 166, 200, and 250, respectively, and loading half time (t 1/2) values were less than 2 min for all analyte ions. The proposed procedure was applied for the determination of metal ions in different water samples with recovery of >94.4% and relative standard deviation less than 4.4% for N = 5.  相似文献   

5.
The kinetics of metal uptake by gel and dry calcium alginate beads was analysed using solutions of copper or lead ions. Gel beads sorbed metal ions faster than the dry ones and larger diffusivities of metal ions were calculated for gel beads: approximately 10−4 cm2/min vs. 10−6 cm2/min for dry beads. In accordance, scanning electron microscopy and nitrogen adsorption data revealed a low porosity of dry alginate particles. However, dry beads showed higher sorption capacities and a mechanical stability more suitable for large-scale use. Two sorption models were fitted to the kinetic results: the Lagergren pseudo-first order and the Ho and McKay pseudo-second order equations. The former was found to be the most adequate to model metal uptake by dry alginate beads and kinetic constants in the orders of 10−3 and 10−2 min−1 were obtained for lead solutions with concentrations up to 100 g/m3. The pseudo-first order model was also found to be valid to describe biosorbent operation with a real wastewater indicating that it can be used to design processes of metal sorption with alginate-based materials.  相似文献   

6.
Uptake and degradation of EDTA by Escherichia coli   总被引:1,自引:0,他引:1  
It was found that Escherichia coli exhibited a growth by utilization of Fe(III)EDTA as a sole nitrogen source. No significant growth was detected when Fe(III)EDTA was replaced by EDTA complexes with other metal ions such as Ca2+, Co2+, Cu2+, Mg2+, Mn2+, and Zn2+. When EDTA uptake was measured in the presence of various ions, it was remarkable only when Fe3+ was present. The cell extract of E. coli exhibited a significant degradation of EDTA only in the presence of Fe3+. It is likely that the capability of E. coli for the growth by utilization of Fe(III)EDTA results from the Fe3+-dependent uptake and degradation of EDTA.  相似文献   

7.
Complexes formed by reduced glutathione (GSH) with metal cations (Cr2+, Mn2+,Fe2+,Co2+,Ni2+,Cu2+,Zn2+,Cd2+,Hg2+) were systematically investigated by the density functional theory (DFT). The results showed that the interactions of the metal cations with GSH resulted in nine different stable complexes and many factors had an effect on the binding energy. Generally, for the same period of metal ions, the binding energies ranked in the order of Cu2+>Ni2+>Co2+>Fe2+>Cr2+>Zn2+>Mn2+; and for the same group of metal ions, the general trend of binding energies was Zn2+>Hg2+>Cd2+. Moreover, the amounts of charge transferred from S or N to transition metal cations are greater than that of O atoms. For Fe2+,Co2+,Ni2+,Cu2+,Zn2+,Cd2+ and Hg2+ complexes, the values of the Wiberg bond indices (WBIs) of M-S (M denotes metal cations) were larger than that of M-N and M-O; for Cr2+ complexes, most of the WBIs of M-O in complexes were higher than that of M-S and M-N. Furthermore, the changes in the electron configuration of the metal cations before and after chelate reaction revealed that Cu2+, Ni2+,Co2+ and Hg2+ had obvious tendencies to be reduced to Cu+,Ni+,Co+ and Hg+ during the coordination process.  相似文献   

8.
Industrial wastewaters polluted with toxic heavy metals are serious ecological and environmental problem. Therefore, in this study multi-heavy metals (Fe2+, Cu2+, Ni2+ and Zn2+) removal process with mixed microbial culture was examined in the horizontal rotating tubular bioreactor (HRTB) by different combinations of process parameters. Hydrodynamic conditions and biomass sorption capacity have main impact on the removal efficiency of heavy metals: Fe2+ 95.5–79.0%, Ni2+ 92.7–54.8%, Cu2+ 87.7–54.9% and Zn2+ 81.8–38.1%, respectively. On the basis of experimental results, integral mathematical model of removal heavy metals in the HRTB was established. It combines hydrodynamics (mixing), mass transfer and kinetics to define bioprocess conduction in the HRTB. Mixing in the HRTB was described by structured cascade model and metal ion removal by two combined diffusion–adsorption models, respectively. For Langmuir model, average variances between experimental and simulated concentrations of metal ions were in the range of 1.22–10.99 × 10−3 and for the Freundlich model 0.12–3.98 × 10−3, respectively. On the basis of previous facts, it is clear that developed integral bioprocess model with Freundlich model is more efficient in the prediction of concentration of metal ions in the HRTB. Furthermore, the results obtained also pointed out that the established model is at the same time accurate and robust and therefore it has great potential for use in the scale-up procedure.  相似文献   

9.
Mg2+, Ca2+, Mn2+, Zn2+, and Cu content of neurons from chick embryo cortex cultivated in chemically defined serum free growth medium was determined by energy dispersive X-ray fluorescence and atomic absorption spectroscopy. The intracellular volume of cultured neurons was determined to be 2.73 l/mg. Intracellular Mn2+, Fe2+, Zn2+, and Cu2+ in the cultivated neurons were 100–200 times the concentrations in the growth medium: Mg2+ and Ca2+ were 0.9 and 1.7 mM respectively, around 20 fold higher than in growth medium. Mg2+, Fe2+, Cu2+ and Zn2+ concentrations in neurons were in the range of ca. 300–600 M, approximately 2–3 times the values previously reported in glial cells; Ca2+ and Mn2+ content of the neurons were higher by 5 and 10 fold respectively compared to glial cells. In neurons, the subcellular distribution of Fe2+, Cu2+, and Mn2+ follows the rank order: cytosol>microsomes>mitochondria; for Zn2+ the distribution differs as following: cytosol >mitochondria>microsomes. Determination of the superoxide dismutase activities in the cultivated neurons indicated that the Mn2+ linked activity predominates whereas, the Cu-Zn dependent enzyme is dominant in glial cells. Enrichment of the culture medium with Mn2+ to 2.5 M enhanced the Mn-SOD by approximately 33% but Cu2+–Zn2+ enzyme activity was not modified. The high Mn2+ content, the capacity to accumulate Mn2+, and the predominancy of the Mn–SOD form observed in neurons is in accord with a fundamental functional role for this metal ion in this type of brain cells.  相似文献   

10.
In recent time, vanadium compounds are being used as antidiabetic drug and in orthopedic implants. However, the exact role of this incorporated vanadium in improving the quality of bone structure and morphology is not known. The impact of vanadium ion was studied and compared to other trace metal ions with respect to the proliferation and osteoblast differentiation of C3H10t1/2 cells. Toxicity profile of these trace metal ions revealed a descending toxicity trend of Fe2+ > Zn2+ > Cu2+ > Co2+ > Mn2+ > V5+ > Cr2+. The effect of vanadium and other trace metal ions on osteoblast differentiation was evaluated by culturing the cells for 10 days in osteoblastic medium supplemented with different trace ions at concentrations lower than their cytotoxic doses. The results indicated that vanadium has maximum impact on the induction of osteoblast differentiation by upregulating alkaline phosphatase activity and mineralization by up to 145 and 150 %, respectively (p?<?0.05), over control. Cu2+ and Zn2+ had a mild inhibitory effect, while Mn2+, Fe2+, and Co2+ demonstrated a clear decrease in osteoblast differentiation when compared to the control. The data as presented here demonstrate that orthopedic implants, if supplemented with trace metals like vanadium, may provide a source of better model for bone formation and its turnover.  相似文献   

11.
《Process Biochemistry》2007,42(4):649-654
Urea is commonly used to lyse cultured cells and solubilize proteins from a biological source. In this study, after extracting biomolecules using a lysis buffer that included urea for an effective cleaning of protein from a urea-rich protein sample, a five-flow microfluidic desalting system was applied using the metal ions of Mn2+, Zn2+ and Fe3+, which have urea affinity-capturing properties. This device effectively removed urea from the sample phase of the microfluidic channel via the diffusion, with a difference of the concentration from the sample flow to both sides of the buffer flow, and an affinity of metal ions into the urea between the buffer phase and the affinity phase. The removal efficiency for the urea was 67, 64, and 63%, with concentrations of 50 mM Mn2+, 10 mM Zn2+, and 5 mM Fe3+ metal ions in the affinity phase, respectively. In addition, protein after desalting with the microfluidic device was improved to more than 10% of the relative activity, with a significant improvement of the signal of mass spectrum shown by MALDI-MS.  相似文献   

12.
In liver homogenate the biosynthesis ofN-acetylneuraminic acid usingN-acetylglucosamine as precursor can be followed stepwise by applying different chromatographic procedures. In this cell-free system 16 metal ions (Zn2+, Mn2+, La3+, Co2+, Cu2+, Hg2+, VO 3 , Pb2+, Ce3+, Cd2+, Fe2+, Fe3+, Al3+, Sn2+, Cs+ and Li+) and the selenium compounds, selenium(IV) oxide and sodium selenite, have been checked with respect to their ability to influence a single or possible several steps of the biosynthesis ofN-acetylneuraminic acid. It could be shown that the following enzymes are sensitive to these metal ions (usually applied at a concentration of 1 mmoll–1):N-acetylglucosamine kinase (inhibited by Zn2+ and vandate), UDP-N-acetylglucosamine-2-epimerase (inhibited by zn2+, Co2+, Cu2+, Hg2+, VO 3 , Pb2+, Cd2+, Fe3+, Cs+, Li+, selenium(IV) oxide and selenite), andN-acetylmannosamine kinase (inhibited by Zn2+, Cu2+, Cd2+, and Co2+). Dose dependent measurements have shown that Zn2+, Cu2+ and selenite are more efficient inhibitors of UDP-N-acetylglucosamine-2-epimerase than vanadate. As for theN-acetylmannosamine kinase inhibition, a decreasing inhibitory effect exists in the following order Zn2+, Cd2+, Co2+ and Cu2+. In contrast, La3+, Al3+ and Mn2+ (1 mmoll–1) did not interfere with the biosynthesis ofN-acetylneuraminic acid. Thus, the conclusion that the inhibitory effect of the metal ions investigated cannot be regarded as simply unspecific is justified.Dedicated to Professor Theodor Günther on the occasion of his 60th birthday  相似文献   

13.
ABSTRACT

Two strains of thermophilic bacteria, Geobacillus thermantarcticus and Anoxybacillus amylolyticus, were employed to investigate the biosorption of heavy metals including Cd2+, Cu2+, Co2+, and Mn2+ ions. The effects of different biosorption parameters such as pH (2.0–10.0), initial metal concentrations (10.0–300.0 mg L?1), amount of biomass (0.25–10 g L?1), temperature (30–80°C), and contact time (15–120 min) were investigated. Concentrations of metal ions were determined by using an inductively coupled plasma optical emission spectrometry (ICP-OES). Optimum pHs for Cd2+, Cu2+, Co2+, and Mn2+ biosorption by Geobacillus thermantarcticus were found to be 4.0, 4.0, 5.0, and 6.0, respectively. For Anoxybacillus amylolyticus, the optimum pHs for Cd2+, Cu2+, Co2+, and Mn2+ biosorption were found to be 5.0, 4.0, 5.0, and 6.0, respectively. The Cd2+, Cu2+, Co2+, and Mn2+ removals at 50 mg L?1 in 60 min by 50 mg dried cells of Geobacillus thermantarcticus were 85.4%, 46.3%, 43.6%, and 65.1%, respectively, whereas 74.1%, 39.8%, 35.1%, and 36.6%, respectively, for Anoxybacillus amylolyticus. The optimum temperatures for heavy metal biosorption were near the optimum growth temperatures for both strains. Scatchard plot analysis was employed to obtain more compact information about the interaction between metal ions and biosorbents. The plot results were further studied to determine if they fit Langmuir and Freundlich models.  相似文献   

14.
《Process Biochemistry》2007,42(1):40-45
In this work, optimizing trace element composition was attempted as a primary strategy to improve surfactin production from Bacillus subtilis ATCC 21332. Statistical experimental design (Taguchi method) was applied for the purpose of identifying optimal trace element composition in the medium. Of the five trace elements examined, Mg2+, K+, Mn2+, and Fe2+ were found to be more significant factors affecting surfactin production by the B. subtilis strain. In the absence of Mg2+ or K+, surfactin yield decreased to 0.4 g/l, which was only 25% of the value obtained from the control run. When Mn2+ and Fe2+ were both absent, the production yield also dropped to ca. 0.6 g/l, approximately one-third of the control value. However, when only one of the two metal ions (Fe2+ or Mn2+) was missing, the B. subtilis ATCC 21332 strain was able to remain over 80% of original surfactin productivity, suggesting that some interactive correlations among the selected metal ions may involve. Taguchi method was thus applied to reveal the interactive effects of Mg2+, K+, Mn2+, Fe2+ on surfactin production. The results show that interaction of Mg2+ and K+ reached significant level. By further optimizing Mg2+ and K+ concentrations in the medium, the surfactin production was boosted to 3.34 g/l, which nearly doubled the yield obtained from the original control.  相似文献   

15.
Heavy metal ions (Pb2+, Cd2+, Mn2+, Cu2+, and Cr2O7 2?) were biosorbed by brown seaweeds (Hizikia fusiformis, Laminaria japonica, and Undaria pinnatifida) collected from the southern coast of South Korea. The biosorption of heavy metal ions was pH-dependent showing a minimum absorption at pH 2 and a maximum biosorption at pH 4 (Pb2+, Cd2+, Mn2+, and Cr2O7 2?) or pH 6 (Cu2+). Biosorption increased most noticeably for pH changes from 2 to 3. In the latter pH range, biosorption increased, because a higher pH decreased the electrostatic repulsion between metal ions and functional groups on the seaweed. In the pH range of 2 ~ 4, biosorption of negatively-charged chromium species (Cr2O7 ?2) followed the pattern of positively-charged metal ions (Pb2+, Cd2+, Mn2+, and Cu2+). This suggests that the most prevalent chromium species were positively-charged Cr3+, reduced from Cr6+ in Cr2O7 ?2. Whereas positively-charged heavy metal ions (Pb2+, Cd2+, Mn2+, and Cu2+) reached a plateau after the maximum level, biosorption of chromium ions decreased noticeably between pH 5 and 8. Kinetic data showed that biosorption by brown seaweed occurred rapidly during the first 10 min, and most of the heavy metals were bound to the seaweed within 30 min. Equilibrium adsorption data for a lead ion could fit well in the Langmuir and Freundlich isotherm models with regression coefficients (R 2) between 0.93 and 0.98.  相似文献   

16.
A thermo stable xylanase was purified and characterized from the cladodes of Cereus pterogonus plant species. The enzyme was purified to homogeneity by ammonium sulfate (80%) fractionation, ion exchange and size exclusion chromatography. The enzyme showed a final specific activity of 216.2 U/mg and the molecular mass of the protein was 80 KDa. The optimum pH and temperature for xylanase activity were 5.0 and 80 °C, respectively,. With oat spelt xylan as a substrate the enzyme yielded a Km value of 2.24 mg/mL and a Vmax of 5.8 μmol min−1 mg−1. In the presence of metal ions (1 mM) such as Co2+,Mn2+, Ni2+, Ca2+ and Fe3+ the activity of the enzyme increased, where as strong inhibition of the enzyme activity was observed with the use of Hg2+, Cd2+, Cu2+, while partial inhibition was noted with Zn2+ and Mg2+. The substrate specificity of the xylanase yielded maximum activity with oat spelt xylan.  相似文献   

17.
Potato starch and both untreated and decationized dextrose syrups were used as substrates for submerged citric acid biosynthesis using a mutant of Aspergillus niger. The same yield of product (80%) was achieved with both syrups and the starch despite having different trace metals content. The obtained mutant was more sensitive than the parent to Cd2+, Mo2+, and As3+, with decreasing yields of citric acid at 10 mg of ions l–1. Fe2+, Mn2+, V2+ below 50 mg l–1 and Cr3+, Ni2+, Cu2+ up to 100 mg l–1, did not significantly inhibit citric acid production.  相似文献   

18.
2-Methyl-2-(pyridin-2-yl)propane-1,3-diamine and formaldehyde are condensed to prepare the hexahydropyrimidine derivative, which is subsequently reacted with two equivalents of 2-vinylpyridine, to produce a novel, potentially pentadentate amine/imine ligand. Full NMR spectroscopic details are reported. The ligand, hexahydro-5-methyl-5-(pyridin-2-yl)-1,3-bis[2-(pyridin-2-yl)ethyl]pyrimidine, acts as a pentadentate in a series of first-row transition metal complexes (M = Ni2+, Fe2+, Zn2+, Cu2+) but is tridentate towards Mn2+, in the corresponding dibromido complex. Single-crystal X-ray structure analyses reveal the metal ions to be hexacoordinate in the case of M = Ni2+, Fe2+, with and additional aqua or halido (Br, Cl) ligand, or pentacoordinate (M = Zn2+, Cu2+, Mn2+). Ferric complexes were not obtained, neither from complexation experiments employing iron(III), nor from oxidations using the iron(II) complex, and hydrogen peroxide or iodosylbenzene. In the case of the latter reactions, mass spectrometric data indicate oxidation of the hexahydropyrimidine core, with concomitant decomplexation of the ligand.  相似文献   

19.
Trehalose synthase (TSII) from Corynebacterium nitrilophilus NRC was successively purified by ammonium sulphate precipitation, ion exchange chromatography on DEAE-cellulose and gel filtration chromatography on Sephadex G-100 columns. The specific activity of the trehalose synthase was increased ~200-fold, from 0.14 U mg−1 protein to 28.3 U mg−1 protein. TSII was found to be a monomeric protein with a molecular weight of 67–69 kDa. Characterization of the enzyme exhibited optimum pH and temperature were 7.5 and 35°C, respectively. The purified enzyme was stable from pH 6.6 to 7.8 and able to prolong its thermal stability up to 35°C. The enzyme activity was inhibited strongly by Zn2+, Hg2+ and Cu2+ and moderately by Ba2+, Fe2+, Pb2+ and Ni2+. Other metal ions Ca2+, Mg2+, Co2+, Mn2+ and EDTA had almost no effect.  相似文献   

20.
In this study we purified and characterized a fibrinolytic protease from the mycelia of Perenniporia fraxinea. The apparent molecular mass of the purified enzyme was estimated to be 42 kDa by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), fibrin zymography and size exclusion using fast protein liquid chromatography (FPLC). The first 20 amino acid residues of the N-terminal sequence were ASYRVLPITKELLPPEFFVA, which shows a high degree of similarity with a fungalysin metallopeptidase from Coprinopsis cinerea. The optimal reaction pH value and temperature were pH 6.0 and 35–40 °C, respectively. Results for the fibrinolysis pattern showed that the protease rapidly hydrolyzed the fibrin α-chain followed by the β-chain. The γ–γ chains were also hydrolyzed, but more slowly. The purified protease effectively hydrolyzed fibrinogen, preferentially digesting the Aα-chains of fibrinogen, followed by Bβ- and γ-chains. We found that protease activity was inhibited by Cu2+, Fe3+, and Zn2+, but enhanced by the additions of Mn2+, Mg2+ and Ca2+ metal ions. Furthermore, the protease activity was inhibited by EDTA, and it was found to exhibit a higher specificity for the chromogenic substrate S-2586 for chymotrypsin, indicating that the enzyme is a chymotrypsin-like metalloprotease. The mycelia of P. fraxinea may thus represent a source of new therapeutic agents to treat thrombosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号