首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A Dascalu  Z Nevo  R Korenstein 《FEBS letters》1991,282(2):305-309
Activation of the Na+/H+ exchanger following isosmotic and hyperosmotic stimuli was investigated in an osteoblast cell line (RCJ 1.20). The pH dependence of the transporter activity was studied under conditions of abolished proton gradient (pHi = pHo) across the membrane. The isotonic response is Na+o dependent, increases towards higher pH-values, displaying a sigmoidal dependence on pHi = o (Hill coefficient approximately 1.8) and is controlled by pHo. The greater than first order dependence on pH suggests that H+o inhibits the exchange beyond the rate expected from competition with the Na+o alone. This may be due to the existence of an external H+ regulatory site with a negative cooperative effect on the intra- or extracellular transport site. The hyperosmotic activation is Na+o independent, parallels the sigmoidal pH dependence of the isosmotic stimulus (Hill coefficient approximately 2.0) and is mediated through an increase of the Vmax without a change in the intracellular proton sensitivity.  相似文献   

2.
Recessed-tip microelectrodes were used to measure internal pH (pHi) in the fungus Neurospora, and to examine the response of pHi to several kinds of stress: changes of extracellular pH (pHo), inhibition of the principal proton pump in the plasma membrane, and inhibition of respiration. Under control conditions, at pHo = 5.8, pHi in Neurospora is 7.19 +/- 0.04. Changes of pHo between 3.9 and 9.3 affect pHi linearly but with a slope of only approximately 0.1 unit pHi per unit pHo, stable pHi being reached within 3 min of changed pHo. Despite a postulated high passive permeability of the Neurospora membrane to protons (Slayman, 1970), neither active nor passive H+ transport appears critical to pHi because (alpha) specific inhibition of the proton pump by orthovanadate has little effect on pHi, and (b) cytoplasmic acidification produced by respiratory blockade is unaffected by the size or direction of proton gradient. To convert measured changes in pHi into net proton fluxes, intracellular buffering capacity (beta i) was measured by the weak acid/weak base technique. At pHi = 7.2, beta i was (-) 35 mmol H+ (liter cell water)-1 (pH unit)-1, but beta i increased substantially in both the acid and alkaline directions, which suggests that amino acid side chains are the principal source of buffer.  相似文献   

3.
The effect of changes in extracellular pH (pHo) and intracellular pH (pHi) on Na+-dependent and Na+-independent inorganic phosphate (Pi) transport in Ehrlich cells was investigated. In the presence of Na+, acutely reducing pHo from 7.30 to 5.50 results first in a transient (approximately 7 min) stimulation of Pi transport. The enhanced rate of transport is a saturable function of the extracellular [H+]; the Ks equals 2.3 X 10(-6) M (pHo 6.68). However, Pi transport is progressively inhibited as pHi falls below 6.50. The effect of pHi on Pi transport measured at various intracellular [Na+] suggests that inhibition develops as a consequence of H+ interaction with an intracellular Na+ site(s) on the Na+-dependent carrier. At pHo 7.4, about 15% of the steady state Pi flux persists in the absence of Na+. However, when pHo is reduced, transport is stimulated to the same extent and with the same time course and kinetic characteristics as in the presence of Na+. Thus, H+ stimulated Pi transport does not require Na+, raising the possibility that the Na+-independent component is mediated by the anion (Cl-) exchanger.  相似文献   

4.
Linolenic acid (C18:3) is the main endogenous unsaturated fatty acid of thylakoid membrane lipids, and seems in its free form to exert significant effects on the structure and function of photosynthetic membranes. In this investigation the effect of linolenic acid was studied at various pH values on the electron flow rate in isolated spinach chloroplasts and related to deltapH, the proton pump and the pH of the inner thylakoid space (pHi). The deltapH and pHi were estimated from the extent of the fluorescence quenching of 9-aminoacridine. Linolenic acid caused a shift (approximately one unit) of the pH optimum for electron flow toward acidity in the following systems: (a) photosystems II + I (from H2O to NADP+ or to 2,6-dichlorophenolindophenol) coupled or non-coupled; (b) photosystem II (from H2O to 2,6-dichlorophenolindophenol in the presence of dibromothymoquinone). In photosystem I conditions (phenazine methosulphate), the deltapH of the control increased as a function of external pHo with a maximum around pH 8.8. When linolenic acid was added, the deltapH dropped, but its optimum was shifted toward more acidic pHo. The same phenomena were also observed in photosytems II + I (from H2O to ferricyanide) and in photosystem II conditions (from H2O to ferricyanide in the presence of dibromothymoquinone). However, the deltapH was smaller and the sensitivity of the proton gradient toward linolenic acid was eventually higher than for photosystem I electron flow activity. The proton pump which might be considered as a measure of the internal buffering capacity of thylakoids was optimum at pHo, 6.7 in the controls. An addition of linolenic acid diminished the proton pump and shifted its optimum toward higher pHo. As a consequence, pHi increased when pHo was raised. At the optimal pHo 8.6 to 9, pHi were 5 to 5.5. Additions of increasing concentrations of linolenic acid displaced the curves toward higher pHi. A decrease of pHo was therefore required to maintain the pHi in the range of 5-5.5 for maximum electron flow. In conclusion, the electron flow activity seems to be delicately controlled by the proton pump (buffer capacity), deltapH, pHi and pHo. Fatty acids damage the membrane integrity in such a way that the subtile equilibrium between the factors is disturbed.  相似文献   

5.
31P-NMR spectroscopy was used to monitor intracellular pH (pHi) in a suspension of LLC-PK1 cells, a renal epithelial cell line. The regulation of intracellular pH (pHi) was studied during intracellular acidification with 20% CO2 or intracellular alkalinization with 30 mM NH4Cl. The steady-state pHi in bicarbonate-containing Ringer's solution (pHo 7.40) was 7.14 +/- 0.04 and in bicarbonate-free Ringer's solution (pHo 7.40) 7.24 +/- 0.04. When pHo was altered in nominally HCO3(-)-free Ringer's, the intracellular pHi changed to only a small extent between pHo 6.6 and pHo 7.6; beyond this range pHi was linearly related to pHo. Below pHo 6.6 the cell was capable of maintaining a delta pH of 0.2 pH unit (inside more alkaline), above pH 7.6 a delta pH of 0.4 unit could be generated (inside more acid). During exposure to 20% CO2 in HCO3(-)-free Ringer's solution, pHi dropped initially to 6.9 +/- 0.05, the rate of realkalinisation was found to be 0.071 pH unit X min-1. After removal of CO2 the pHi increased by 0.65 and the rate of reacidification was 0.056 pH unit X min-1. Exposure to 30 mM NH4Cl caused a raise of pHi by 0.48 pH unit and an initial rate of re-acidification of 0.063 pH unit X min-1, after removal of NH4Cl the pHi fell by 0.58 pH unit below the steady-state pHi, followed by a subsequent re-alkalinization of 0.083 pH unit X min-1. Under both experimental conditions, the pHi recovery after an intracellular acidification, introduced by exposure to 20% CO2 and by removal of NH4+, was found to be inhibited by 53% and 63%, respectively, in the absence of sodium and 60% and 72%, respectively, by 1 mM amiloride. These studies indicate that 31P-NMR can be used to monitor steady-state intracellular pH as well a pHi transients in suspensions of epithelial cells. The results support the view that LLC-PK1 cells use an Na+-H+ exchange system to readjust their internal pH after acid loading of the cell.  相似文献   

6.
A pH-sensitive site controls the lambda max of Limulus metarhodopsin. The properties of this site were examined using intracellular recordings of the early receptor potential (ERP) as a pigment assay. ERPs recorded over a range of extracellular pHs indicate that the apparent pK of the site is in the range of 8.3-8.6. Several lines of evidence indicate that the site responds directly to changes in extracellular pH (pHo) rather than to changes in intracellular pH(pHi) that follow as a secondary result of changing pHo : (a) the effect of changing pHo was rapid (less than 60 s); (b) when pHo was raised, the simultaneous rise in pHi, as measured with phenol red, was relatively small; (c) raising pHi by intracellular injection of pH 10 glycine buffer did not affect the site; and (d) the effect of changing pH0 could not be blocked by increasing the intracellular pH buffering capacity. It is concluded that the pH-sensitive site on metarhodopsin is on the extracellular surface of the plasma membrane.  相似文献   

7.
Buckhout TJ 《Plant physiology》1994,106(3):991-998
The kinetics behavior of the H+-sucrose (Suc) symporter was investigated in plasma membrane vesicles from sugar beet (Beta vulgaris L.) leaves by analyzing the effect of external and internal pH (pHo and pHi, respectively) on Suc uptake. The apparent Km for Suc uptake increased 18-fold as the pHo increased from 5.5 to 7.5. Over this same pHo range, the apparent Vmax for Suc uptake remained constant. The effects of pHi in the presence or absence of internal Suc were exclusively restricted to changes in Vmax. Thus, proton concentration on the inside of the membrane vesicles ([H+]i) behaved as a noncompetitive inhibitor of Suc uptake. The Km for the proton concentration on the outside of the membrane vesicles was estimated to be pH 6.3, which would indicate that at physiological apoplastic pH Suc transport might be sensitive to changes in pHo. On the other hand, the [H+]i for half-maximal inhibition of Suc uptake was approximately pH 5.4, making regulation of Suc transport through changes in [H+]i unlikely. These results were interpreted in the framework of the kinetics models for co-transport systems developed by D. Sanders, U.-P. Hansen, D. Gradmann, and C. L. Slayman (J Membr Biol [1984] 77: 123-152). Based on their analysis, the behavior of the Suc symporter with respect to the [H+]i is interpreted as an ordered binding mechanism by which the binding of Suc on the apoplastic side of the membrane and its release on the symplastic side precedes that of H+ (i.e. a first-on, first-off model).  相似文献   

8.
The intracellular pH (pHi) changes resulting from chemotactic factor-induced activation of Na+/H+ exchange in isolated human neutrophils were characterized. Intracellular pH was measured from the equilibrium distribution of [14C]-5,5-dimethyloxazolidine-2,4-dione and from the fluorescence of 6-carboxyfluorescein. Exposure of cells to 0.1 microM N-formyl-methionyl-leucyl-phenylalanine (FMLP) in 140 mM Na+ medium at extracellular pH (pHo) 7.40 led to a rise in pHi along an exponential time course (rate coefficient approximately 0.55 min-1). By 10 min, a new steady-state pHi was reached (7.75-7.80) that was 0.55-0.60 units higher than the resting pHi of control cells (7.20-7.25). The initial rate of H+ efflux from the cells (approximately 15 meq/liter X min), calculated from the intrinsic intracellular buffering power of approximately 50 mM/pH, was comparable to the rate of net Na+ influx (approximately 17 meq/liter X min), an observation consistent with a 1:1 stoichiometry for Na+/H+ exchange. This counter-transport could be inhibited by amiloride (apparent Ki approximately 75 microM). When either the external ([Na+]o) or internal Na ([Na+]i) concentrations, pHo, or pHi were varied independently, the new steady-state [Na+]i and pHi values in FMLP-stimulated cells were those corresponding to a chemical equilibrium distribution of Na+ and H+ across the cell membrane. By analogy to other activated cells, these results indicate that an alkalinization of pHi in human neutrophils is mediated by a chemotactic factor-induced exchange of internal H+ for external Na+.  相似文献   

9.
This study demonstrates that exposure of log-phase Lactococcus lactis subsp. cremoris 712 cells to mildly acid conditions induces resistance to normally lethal intensities of environmental stresses such as acid, heat, NaCl, H2O2, and ethanol. The intracellular pH (pHi) played a major role in the induction of this multistress resistance response. The pHi was dependent on the extracellular pH (pHo) and on the specific acid used to reduce the pHo. When resuspended in fresh medium, cells were able to maintain a pH gradient even at pHo values that resulted in cell death. Induction of an acid tolerance response (ATR) coincided with an increase in the ability of cells to resist change to an unfavorable pHi; nevertheless, a more favorable pHi was not the sole reason for the increased survival at acid pHo. Cells with an induced ATR survived exposure to a lethal pHo much better than did uninduced cells with a pHi identical to that of the induced cells. Survival following lethal acid shock was dependent on the pHi during induction of the ATR, and the highest survival was observed following induction at a pHi of 5.9, which was the lowest pHi at which growth occurred. Increased acid tolerance and the ability to maintain a higher pHi during lethal acid stress were not acquired if protein synthesis was inhibited by chloramphenicol during adaptation.  相似文献   

10.
Intracellular pH (pHi), measured with H+-selective microelectrodes, in quiescent frog sartorius muscle fibres was 7.29 +/- 0.09 (n = 13). Frog muscle fibres were superfused with a modified Ringer solution containing 30 mM HEPES buffer, at extracellular pH (pHo) 7.35. Intracellular pH decreased to 6.45 +/- 0.14 (n = 13) following replacement of 30 mM NaCl with sodium lactate (30 mM MES, pHo 6.20). Intracellular pH recovery, upon removal of external lactic acid, depended on the buffer concentration of the modified Ringer solution. The measured values of the pHi recovery rates was 0.06 +/- 0.01 delta pHi/min (n = 5) in 3 mM HEPES and was 0.18 +/- 0.06 delta pHi/min (n = 13) in 30 mM HEPES, pHo 7.35. The Na+-H+ exchange inhibitor amiloride (2 mM) slightly reduced pHi recovery rate. The results indicate that the net proton efflux from lactic acidotic frog skeletal muscle is mainly by lactic acid efflux and is limited by the transmembrane pH gradient which, in turn, depends on the extracellular buffer capacity in the diffusion limited space around the muscle fibres.  相似文献   

11.
The competition between the yeasts Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 for glucose was studied in sugar-limited chemostat cultures. Under aerobic conditions, C. utilis always successfully completed against S. cerevisiae. Only under anaerobic conditions did S. cerevisiae become the dominant species. The rationale behind these observations probably is that under aerobic glucose-limited conditions, high-affinity glucose/proton symporters are present in C. utilis, whereas in S. cerevisiae, glucose transport occurs via facilitated diffusion with low-affinity carriers. Our results explain the frequent occurrence of infections by Crabtree-negative yeasts during bakers' yeast production.  相似文献   

12.
Pyranine is shown to be a convenient and sensitive probe for reporting pH values, pHi, at the interior of anionic and at the outer surface of cationic liposomes. It is well shielded from the phospholipid headgroups by water molecules in the interior of anionic liposomes, but it is bound to the surface of cationic liposomes. Hydrogen ion concentrations outside the liposomes, 'bulk pH values', pHo, were measured by a combination electrode. While pHi = pHo for neutral, pHi less than pHo for anionic and pHi greater than pHo for cationic liposomes prepared in 5.0 . 10(-3) M phosphate buffers. pKa values for the ionization of pyranine were 7.22 +/- 0.04 and 6.00 +/- 0.05 in water and at the external surface of cationic liposomes. The surface potential for cationic liposomes containing dipalmitoyl-DL-alpha-phosphatidylcholine, cholesterol and octadecylamine in the molar ratio of 1.00 : 0.634 : 1.01, were calcuated to be +72.2 mV. Proton permeabilities were measured for single and multicompartment anionic liposomes. Transfer of anionic liposomes prepared at a given pH to a solution of different pH resulted in a pH gradient if sodium phosphate or borate were used as buffers. In the presence of sodium acetate proton equilibration is promptly established.  相似文献   

13.
Fluorescence and electrophysiological methods were used to determine the effects of intracellular pH (pHi) on cellular NH4+/K+ transport pathways in the renal medullary thick ascending limb of Henle (MTAL) from CD1 mice. Studies were performed in suspensions of MTAL tubules (S-MTAL) and in isolated, perfused MTAL segments (IP-MTAL). Steady-state pHi measured using 2,7-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF) averaged 7.42 +/- 0.02 (mean +/- SE) in S-MTAL and 7.26 +/- 0.04 in IP-MTAL. The intrinsic cellular buffering power of MTAL cells was 29.7 +/- 2.4 mM/pHi unit at pHi values between 7.0 and 7.6, but below a pHi of 7.0 the intrinsic buffering power increased linearly to approximately 50 mM/pHi unit at pHi 6.5. In IP-MTAL, NH4+ entered cells across apical membranes via both Ba(2+)-sensitive pathway and furosemide-sensitive Na+:K+(NH4+):2Cl- cotransport mechanisms. The K0.5 and maximal rate for combined apical entry were 0.5 mM and 83.3 mM/min, respectively. The apical Ba(2+)-sensitive cell conductance in IP-MTAL (Gc), which reflects the apical K+ conductance, was sensitive to pHi over a pHi range of 6.0-7.4 with an apparent K0.5 at pHi approximately 6.7. The rate of cellular NH4+ influx in IP-MTAL due to the apical Ba(2+)-sensitive NH4+ transport pathway was sensitive to reduction in cytosolic pH whether pHi was changed by acidifying the basolateral medium or by inhibition of the apical Na+:H+ exchanger with amiloride at a constant pHo of 7.4. The pHi sensitivities of Gc and apical, Ba(2+)-sensitive NH4+ influx in IP-MTAL were virtually identical. The pHi sensitivity of the Ba(2+)-sensitive NH4+ influx in S-MTAL when exposed to (apical+basolateral) NH4Cl was greater than that observed in IP-MTAL where NH4Cl was added only to apical membranes, suggesting an additional effect of intracellular NH4+/NH3 on NH4+ influx. NH4+ entry via apical Na+:K+ (NH4+):2Cl- cotransport in IP-MTAL was somewhat more sensitive to reductions in pHi than the Ba(2+)-sensitive NH4+ influx pathway; NH4+ entry decreased by 52.9 +/- 13.4% on reducing pHi from 7.31 +/- 0.17 to 6.82 +/- 0.14. These results suggest that pHi may provide a negative feedback signal for regulating the rate of apical NH4+ entry, and hence transcellular NH4+ transport, in the MTAL. A model incorporating these results is proposed which illustrates the role of both pHi and basolateral/intracellular NH4+/NH3 in regulating the rate of transcellular N H4+ transport in the MTAL.  相似文献   

14.
The ion transport mechanism that regulates intracellular pH (pHi) in giant barnacle muscle fibers was studied by measuring pHi and unidirectional Na+ fluxes in internally dialyzed fibers. The overall process normally results in a net acid extrusion from the cell, presumably by a membrane transport mechanism that exchanges external Na+ and HCO-3 for internal Cl- and possibly H+. However, we found that net transport can be reversed either by lowering [HCO-3]o and pHo or by reducing [Na+]o. This reversal (acid uptake) required external Cl-, was stimulated by raising [Na+]i, and was blocked by SITS. When the transporter was operating in the net forward direction (acid extrusion), we found a unidirectional Na+ influx of approximately 60 pmol . cm-2 . s-1, which required external HCO-3 and internal Cl- and was stimulated by cyclic AMP and blocked by SITS or DIDS. These properties of the Na+ influx are all shared with the net acid extrusion process. We also found that under conditions of net forward transport, the pHi-regulating system mediated a unidirectional Na+ efflux, which was significantly smaller than the simultaneous Na+ influx. These data are consistent with a reversible transport mechanism which, even when operating in the net forward direction, mediates a small amount of reversed transport. We also found that the ouabain-sensitive Na+ efflux was sharply inhibited by acidic pHi, being totally absent at pHi values below approximately 6.8.  相似文献   

15.
The study of glucose-induced proton fluxes in Saccharomyces cerevisiae NCYC 431 showed a decrease of proton net efflux by ethanol across the plasma membrane of energized cells. Furthermore a negative net proton efflux (an influx) occurred from a given ethanol concentration (between 1.3 and 1.5 M) whatever the experimental conditions used, thus allowing the definition of a nil-net exchange step where no net movement of protons across the plasma membrane could be observed. A new technique of ethanol tolerance determination in yeast based upon a correlation for the same ethanol concentration between both the collapse of the proton gradient and the growth cessation in cultures supplemented with ethanol after 8 h incubation was proposed. The defined method also showed a cumulated effect of temperature and ethanol on Saccharomyces cerevisiae NCYC 431.  相似文献   

16.
The acid tolerance response (ATR) of chemostat cultures of Lactococcus lactis subsp. cremoris NCDO 712 was dependent on the dilution rate and on the extracellular pH (pHo). A decrease in either the dilution rate or the pHo led to a decrease in the cytoplasmic pH (pHi) of the cells, and similar levels of acid tolerance were observed at any specific pHi irrespective of whether the pHi resulted from manipulation of the growth rate, manipulation of the pHo, or both. Acid tolerance was also induced by sudden additions of acid to chemostat cultures growing at a pHo of 7.0, and this induction was completely inhibited by chloramphenicol. The end products of glucose fermentation depended on the growth rate and the environmental pHo of the cultures, but neither the spectrum of end products nor the total rate of acid production correlated with a specific pHi. The rate of ATP formation was not correlated with pHi, but a good correlation between the cellular level of H+-ATPase and pHi was observed. Moreover, an inverse correlation between the cytoplasmic levels of ATP and pHi was established. Each pHi below 6. 6 was characterized by unique levels of ATR, H+-ATPase, and ATP. High levels of H+-ATPase also coincided with high levels of acid tolerance of cells in batch cultures induced with sublethal levels of acid. We concluded that H+-ATPase is one of the ATR proteins induced by acid pHi through growth at an acid pHo or a slow growth rate.  相似文献   

17.
We investigated the influence of intracellular pH (pHi) on [14C]-glycocholate (GC) uptake by human hepatoblastoma HepG2 cells that express sodium-independent (mainly OATP-A and OATP-8), but not sodium-dependent, GC transporters. Replacement of extracellular sodium by choline (Chol) stimulated GC uptake but did not affect GC efflux from loaded cells. Amiloride or NaCl replacement by tetraethylammonium chloride (TeACl) or sucrose also increased GC uptake. All stimulating circumstances decreased pHi. By contrast, adding to the medium ammonium or imidazole, which increased pHi, had no effect on GC uptake. In Chinese hamster ovary (CHO) cells expressing rat Oatp1, acidification of pHi had the opposite effect on GC uptake, that is, this was reduced. Changes in extracellular pH (pHo) between 7.40 and 7.00 had no effect on GC uptake at pHi 7.30 or 7.45 when pHopHi. Inhibition was not proportional to the pHo-pHi difference. Intracellular acidification decreased V(max), but had no effect on K(m). In sum, sodium-independent GC transport can be affected by intracellular acidification, possibly due both to modifications in the driving forces and to the particular response to protonation of carrier proteins involved in this process.  相似文献   

18.
Intracellular microelectrode techniques and extracellular pH measurements were used to study the dependence of apical Na+/H+ exchange on mucosal and intracellular pH and on mucosal solution Na+ concentration ([Na+]o). When mucosal solution pH (pHo) was decreased in gallbladders bathed in Na(+)-containing solutions, aNai fell. The effect of pHo is consistent with titration of a single site with an apparent pK of 6.29. In Na(+)-depleted tissues, increasing [Na+]o from 0 to values ranging from 2.5 to 110 mM increased aNai; the relationship was well described by Michaelis-Menten kinetics. The apparent Km was 15 mM at pHo 7.5 and increased to 134 mM at pHo 6.5, without change in Vmax. In Na(+)-depleted gallbladders, elevating [Na+]o from 0 to 25 mM increased aNai and pHi and caused acidification of a poorly buffered mucosal solution upon stopping the superfusion; lowering pHo inhibited both apical Na+ entry and mucosal solution acidification. Both effects can be ascribed to titration of a single site; the apparent pK's were 7.2 and 7.4, respectively. Diethylpyrocarbonate (DEPC), a histidine-specific reagent, reduced mucosal acidification by 58 +/- 4 or 39 +/- 6% when exposure to the drug was at pHo 7.5 or 6.5, respectively. Amiloride (1 mM) did not protect against the DEPC inhibition, but reduced both apical Na+ entry and mucosal acidification by 63 +/- 5 and 65 +/- 9%, respectively. In the Na(+)-depleted tissues mean pHi was 6.7. Cells were alkalinized by exposure to mucosal solutions containing high concentrations of nicotine or methylamine. Estimates of apical Na+ entry at varying pHi, upon increasing [Na+]o from 0 to 25 mM, indicate that Na+/H+ exchange is active at pHi 7.4. Intracellular H+ stimulated apical Na+ entry by titration of more than one site (apparent pK 7.1, Hill coefficient 1.7). The results suggest that external Na+ and H+ interact with one site of the Na+/H+ exchanger and that cytoplasmic H+ acts on at least two sites. The external titratable group seems to be an imidazolium, which is apparently different from the amiloride-binding site. The dependence of Na+ entry on pHi supports the notion that the Na+/H+ exchanger is operational under normal transport conditions.  相似文献   

19.
Ethanol, isopropanol, propanol and butanol enhanced the passive influx of protons into deenergized cells of Saccharomyces cerevisiae. The influx followed first-order kinetics with a rate constant that increased exponentially with the alkanol concentration. The exponential enhancement constants increased with the lipid solubility of the alkanols, which indicated hydrophobic membrane regions as the target sites. While the enhancement constants were independent of pH over the range tested (3.3–5.0), the rate constants decreased linearly with increasing extracellular proton concentration, indicating the presence of an additional surface barrier against proton penetration, the effectiveness of which increased with protonation. The alkanols affected the acidification curves of energized yeast suspensions in such a way that the final pH values were linear functions of the alkanol concentrations. These results were consistent with a balance between active and passive proton movements at the final pH, the exponential enhancement constants calculated from the slopes being nearly identical with those obtained with deenergized cells. It was concluded that passive proton influx contributes to the kinetics of acidification in S. cerevisiae and that uncoupling contributes to the overall kinetics of alkanol-inhibited secondary active transport across the yeast plasma membrane.  相似文献   

20.
The vacuolar H(+)-ATPase (V-ATPase) along with ion channels and transporters maintains vacuolar pH. V-ATPase ATP hydrolysis is coupled with proton transport and establishes an electrochemical gradient between the cytosol and vacuolar lumen for coupled transport of metabolites. Btn1p, the yeast homolog to human CLN3 that is defective in Batten disease, localizes to the vacuole. We previously reported that Btn1p is required for vacuolar pH maintenance and ATP-dependent vacuolar arginine transport. We report that extracellular pH alters both V-ATPase activity and proton transport into the vacuole of wild-type Saccharomyces cerevisiae. V-ATPase activity is modulated through the assembly and disassembly of the V(0) and V(1) V-ATPase subunits located in the vacuolar membrane and on the cytosolic side of the vacuolar membrane, respectively. V-ATPase assembly is increased in yeast cells grown in high extracellular pH. In addition, at elevated extracellular pH, S. cerevisiae lacking BTN1 (btn1-Delta), have decreased V-ATPase activity while proton transport into the vacuole remains similar to that for wild type. Thus, coupling of V-ATPase activity and proton transport in btn1-Delta is altered. We show that down-regulation of V-ATPase activity compensates the vacuolar pH imbalance for btn1-Delta at early growth phases. We therefore propose that Btn1p is required for tight regulation of vacuolar pH to maintain the vacuolar luminal content and optimal activity of this organelle and that disruption in Btn1p function leads to a modulation of V-ATPase activity to maintain cellular pH homeostasis and vacuolar luminal content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号