首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Four neutral gadolinium complexes of diethylenetriaminepentaacetic acid (DTPA)-bisamide derivatives have been synthesized and characterized. Their potential application as tissue-specific and low-osmolarity MRI contrast agents has been evaluated by in vitro and in vivo experiments. Their measured relaxivities in D(2)O, bovine serum albumin and human serum transferrin solutions showed favorable relaxation ability. In vivo studies have proven that Gd(DTPA-BDMA), Gd(DTPA-BIN), and Gd(cyclic-DTPA-1,2-pn) could be promising liver-specific MRI contrast agents and Gd(DTPA-BDMA), and Gd(cyclic-DTPA-1,2-pn) have favorable renal excretion capability. Among them, Gd(cyclic-DTPA-1,2-pn) is a more powerful hepatic contrast agent and Gd(DTPA-BIN) provides the stable imaging contrast for several hours. They also show a lower toxicity.  相似文献   

2.
Both diethylenetriaminepentaacetic acid (DTPA) and sulfadiazine (SD) were incorporated into polyaspartamides with different side chains, including poly-alpha,beta-[N-(2-hydroxyethyl)-L-aspartamide] (PHEA), poly-alpha,beta-[N- (3-hydroxypropyl)-L-aspartamide] (PHPA), poly-alpha,beta-[N-(2-aminoethy1)-L-aspartamide] (PAEA), poly-alpha,beta-[N-(4-aminobuty1)-L-aspartamide] (PABA), and poly-alpha,beta-[N-(6-aminohexyl)-L-aspartamide] (PAHA). The polyaspartamide ligands containing DTPA and SD groups were further reacted with gadolinium chloride to give the corresponding macromolecular gadolinium complexes. Experimental data of 1H NMR, IR, UV, and elemental analysis exhibited the formation of the polyaspartamide ligands and gadolinium complexes. Relaxivity studies indicated that the macromolecular chelates possess higher relaxivities than that of the clinically used Gd-DTPA. MR imaging showed that the macromolecular chelate PAEA-Gd-DTPA-SD greatly enhanced the contrast of MR images of hepatoma in the lower limb of mice and provided prolonged intravascular duration. Thus the polyaspartamide gadolinium complex containing SD groups is expected to be used as the potential macromolecular MRI contrast agents for hepatoma in mice.  相似文献   

3.
Li W  Li Z  Jing F  Deng Y  Wei L  Liao P  Yang X  Li X  Pei F  Wang X  Lei H 《Carbohydrate research》2008,343(4):685-694
Arabinogalactan derivatives conjugated with gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) by ethylenediamine (Gd-DTPA-CMAG-A2) or hexylamine (Gd-DTPA-CMAG-A6) have been synthesized and characterized by means of Fourier transform infrared spectra (FTIR), 13C nuclear magnetic resonance (13C NMR), size exclusion chromatography (SEC), and inductively coupled plasma atomic emission spectrometry (ICP-AES). Relaxivity studies showed that arabinogalactan-bound complexes possessed higher relaxation effectiveness compared with the clinically used Gd-DTPA, and the influence of the spacer arm lengths on the T1 relaxivities was studied. Their stability was investigated by competition study with Ca2+, EDTA, and DTPA. MR imaging of Wistar rats showed remarkable enhancement in rat liver and kidney after i.v. injection of Gd-DTPA-CMAG-A2 (0.079+/-0.002 mmol/kg Gd3+): The mean percentage enhancement of the liver parenchyma and kidney was 38.7+/-6.4% and 69.4+/-4.4% at 10-30 min. Our preliminary in vivo and in vitro study indicates that the arabinogalactan-bound complexes are potential liver-specific contrast agents for MRI.  相似文献   

4.
Two novel Gd(III) complexes with functionalised polyaminocarboxylate macrocycles, 1,4,7-tris(carboxymethyl)-9,24-dioxo-14,19-dioxa-1,4,7,10,23- pentaazacyclododecane (L(1)) and 1,4,7-tris(carboxymethyl)-9,25-dioxo-14,17,20-trioxa-1,4,7,10,23- pentaazacyclotridecane (L(2)), were prepared in good yield. Their potential use as magnetic resonance imaging (MRI) contrast agents (CAs) was evaluated by investigating their relaxation behaviour as a function of pH, temperature and magnetic field strength. The 1/T(1) proton relaxivities at 20 MHz and 25 degrees C of GdL(1) (5.87 mM(-1) s(-1)) and GdL(2) (6.14 mM(-1) s(-1)) were found to be significantly higher than the clinically used Gd 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (Gd(DOTA)(-)) and Gd diethylenetriaminepentaethanoic acid (Gd(DTPA)(2-)). The complexes possess one water molecule in the inner coordination sphere whose mean residence lifetime was estimated to be 1.1 and 1.5 micros at 25 degrees C by variable temperature (VT) (17)O NMR spectroscopy.  相似文献   

5.
Gadolinium-based carbon nanostructures are poised to make a significant impact as advanced contrast agents (CAs) for magnetic resonance imaging (MRI) in medicine. This paper reviews and forecasts gadonanotubes as synthons for the design of high-performance MRI CA probes with efficacies up to 100 times greater than current clinical CAs. This level of performance is vital for achieving the goal of cellular and molecular imaging with MRI. These new materials will be useful for in vivo MRI applications as circulating drug nanocapsules because of their low toxicities, extremely high relaxivities, and potential for cellular targeting and induced cell death by magnetic hyperthermia.  相似文献   

6.
7.
Transition-metal-ion-based paramagnetic chemical exchange saturation transfer (paraCEST) agents are a promising new class of compounds for magnetic resonance imaging (MRI) contrast. Members in this class of compounds include paramagnetic complexes of FeII, CoII, and NiII. The development of the coordination chemistry for these paraCEST agents is presented with an emphasis on the choice of the azamacrocycle backbone and pendent groups with the goals of controlling the oxidation state, spin state, and stability of the complexes. Chemical exchange saturation transfer spectra and images are compared for different macrocyclic complexes containing amide or heterocyclic pendent groups. The potential of paraCEST agents that function as pH- and redox-activated MRI probes is discussed.  相似文献   

8.
Two mono-substituted manganese polyoxometalates, K(6)MnSiW(11)O(39) (MnSiW(11)) and K(8)MnP(2)W(17)O(61) (MnP(2)W(17)), have been evaluated by in vivo and in vitro experiments as the candidates of potential tissue-specific contrast agents for magnetic resonance imaging (MRI). T1-relaxivities of 12.1mM(-1)s(-1) for MnSiW(11) and 4.7 mM(-1)s(-1) for MnP(2)W(17) (400 MHz, 25 degrees C) were higher than or similar to that of the commercial MRI contrast agent (GdDTPA). Their relaxivities in BSA and hTf solutions were also reported. After administration of MnSiW(11) and MnP(2)W(17) to Wistar rats, MR imaging showed longer and remarkable enhancement in rat liver and favorable renal excretion capability. The signal intensity increased by 74.0+/-4.9% for the liver during the whole imaging period (90 min) and by 67.2+/-5.3% for kidney within 20-70 min after injection at 40+/-3 micromol kg(-1) dose for MnSiW(11). MnP(2)W(17) induced 71.5+/-15.1% enhancement for the liver in 10-45 min range and 73.1+/-3.2% enhancement for kidney within 5-40 min after injection at 39+/-3 micromol kg(-1) dose. In vitro and in vivo study showed MnSiW(11) and MnP(2)W(17) being favorable candidates as the tissue-specific contrast agents for MRI.  相似文献   

9.
Interactions of paramagnetic metal complexes with their biological environment can modulate their magnetic resonance imaging (MRI) contrast–enhancing properties in different ways, and this has been widely exploited to create responsive probes that can provide biochemical information. We survey progress in two rapidly growing areas: the MRI detection of biologically important metal ions, such as calcium, zinc, and copper, and the use of transition metal complexes as smart MRI agents. In both fields, new imaging technologies, which take advantage of other nuclei (19F) and/or paramagnetic contact shift effects, emerge beyond classical, relaxation-based applications. Most importantly, in vivo imaging is gaining ground, and the promise of molecular MRI is becoming reality, at least for preclinical research.  相似文献   

10.
11.
12.
Mixed supramolecular aggregates, obtained by assembling together two amphiphilic monomers (C18H37)2NCO(CH2)2CO(AdOO)5-G-CCK8 (AdOO is 8-amino-3,6-dioxaoctanoic acid, CCK8 is C-terminal octapeptide of cholecystokinin) and (C18H37)2NCO(CH2)2COLys(DTPAGlu)CONH2 (DTPAGlu is N,N-bis[2-[bis(carboxyethyl)amino]ethyl]-l-glutamic acid), are characterized for their structural parameters by dynamic light scattering and for their relaxometric properties, in the absence and in the presence of 0.9 wt% NaCl. Two different aggregates (micelles and bilayer structures) are present in the absence of NaCl, while only bilayer structures are observed at physiological ionic strength. The presence of NaCl increases the ionic strength, promoting a decrease in the repulsions between the polar heads and among the aggregates in solution, thus supporting the formation of large-curvature aggregates such as bilayer structures like vesicles. In these conditions the closed, vesicular shape and the large size (hydrodynamic radius of about 300 Å) of the aggregates allow a high number of paramagnetic gadolinium complexes and bioactive peptides to be accommodated on the inner and external surfaces . The presence of the salt causes a variation in the structural arrangement of the molecules and a partial rigidification of the assembled Gd(III) complexes on the surface vesicles, reducing their internal motions and giving an approximately 15% higher relaxivity value (r 1p = 21.0 and 18.6 Mm?1 s?1 in the presence and in the absence of NaCl, respectively). The vesicles obtained, for the high relaxivity of each gadolidium complex and for the presence of a surface-exposed bioactive peptide, are very promising candidates as target-selective MRI contrast agents.  相似文献   

13.
A recombinant VH single-domain antibody recognizing staphylococcal protein A was functionalized on reactive lysine residues with N-hydroxysuccimidyl-activated 4-cyanobenzoate. Surface plasmon resonance analysis of antibody-antigen binding revealed that modified and unmodified antibodies bound protein A with similar affinities. Raman imaging of the modified antibodies indicated that the benzonitrile group provides vibrational contrast enhancement in a region of the electromagnetic spectrum that is transparent to cellular materials. Thus, the modified single-domain antibody may be amenable to detecting protein A from samples of the human pathogen Staphylococcus aureus using vibronic detection schemes such as Raman and coherent anti-Stokes Raman scattering. The generality of this labeling strategy should make it applicable to modifying an array of proteins with varied structure and function.  相似文献   

14.
The unique properties of polyoxometalates, such as molecular polarity, redox potential, surface charge distribution, shape and acidity, influence their response of recognition to targeted biological macromolecules. By using PM-19 (K7PTi2W10O40) as a lead-compound, a series of novel pyridinium polyoxometalates (A7PTi2W10O40), which hadn’t been reported in literatures, were designed and synthesized. The evaluation was conducted using the single-cycle pseudovirus infection assay (TZM-bl assay), CCK-8 method was used for determining the cytotoxicity. The results indicated that the designed pyridinium polyoxometalates had a lower toxicity to TZM-bl cells, and showed higher inhibitory activity against HIV-1 virus.  相似文献   

15.
We find anomalously high gadolinium (Gd) concentrations in the femoral head bones of patients exposed to chelated Gd, commonly used as a contrast agent for medical imaging. Gd is introduced in chelated form to protect patients from exposure to toxic free Gd(3+), a calcium antagonist which disrupts cellular processes. Recent studies suggest Gd chelates break down in vivo, and Gd accumulation in tissue is linked to medical conditions such as nephrogenic systemic fibrosis (NSF), acute kidney failure, and in some cases death. We measure Gd and other rare earth element (REE) concentrations in 35 femoral heads by solution based ICP-MS. Gd concentrations in patients with documented exposure to Gd-based contrast agents (n = 13: Gd DTPA-BMA (Omniscan) n = 6; Gd HP-DO3A (Prohance) n = 5; unknown type n = 4) are significantly higher (p < 0.001) than the control group (n = 17). We use our control group to establish the 'natural' background level of Gd in human bone (cortical 95% CI: 0.023, 0.041 nmol/g; trabecular 95% CI: 0.054, 0.107 nmol/g). A control group outlier reveals the occurrence of individuals with high concentrations of all REEs, including Gd. Because of this, we calculate Gd anomalies from the concentrations of adjacent REEs and normalize to the control group mean to isolate Gd input from contrast agents. Normalized Gd anomalies, (Gd/Gd*)(N), for exposed patients range up to >800 times the 'natural' level (95% CI: 124, 460). Our data confirm that Gd, introduced in chelated form, incorporates into bone and is retained for more than 8 years. No difference was observed in bone Gd concentrations and anomalies between patients dosed with Gd DTPA-BMA (Omniscan; n = 6) and Gd HP-DO3A (Prohance; n = 5). Osteoporotic fracture patients exposed to Gd have significantly lower Gd concentrations than osteoarthritis patients (p < 0.001). This indicates different mechanisms of metal incorporation and/or retention in osteoporotic bone tissues, and may signal an increased risk of endogenous Gd release for patients with increased rates of bone resorption (e.g. osteoporosis patients and menopausal, pregnant, and lactating women) who are exposed to Gd-based contrast agents.  相似文献   

16.
Abstract

Small unilamellar liposomes were used as carriers for chelates of gadolinium as organ specific magnetic resonance imaging (MRI) contrast agents. The pharmacokinetic and imaging properties of the lipophilic liposome membrane associated chelate diethylenetriaminepentaacetate-stearylamide (DTPA-SA) were investigated. Gadolinium-DTPA-SA liposomes accumulated in the liver of rats at a peak concentration of 60% of the injected dose 4 hours after application. The elimination half-life from the liver was 61 h. Tl-weighted MR images of this liposomal Gd-chelate in rats and dogs gave a strong signal enhancement of the abdominal organs, liver and spleen. High blood concentrations of the Gd-DTPASA liposomes, reaching 60% of the injected dose after 30 min., decreasing to 40% after 2 hours, suggest their potential as a contrast agent for the blood pool. The gadolinium chelate benzoyloxypropionictetraacetate (Gd-BOPTA) was entrapped in liposomes of different lipid composition. Pharmacokinetic studies of liposome preparations containing a poly(ethylene)glycol (PEG) modified lipid showed that high levels of 80 - 60 % of the injected dose remained in the blood, 15 to 60 minutes after application. Peak blood concentrations of liposomes without PEG reached only 30%, with a correspondingly higher uptake in the liver and the spleen. Thus, both the lipophilic chelate Gd-DTPA-SA, as well as Gd-BOPTA entrapped within the aqueous volume of liposomes possess not only a potential as a liver and spleen specific contrast agent, but also for the imaging of the vascular system.  相似文献   

17.
Based on a commercially available hyperbranched aliphatic polyester, novel multifunctional gadolinium complexes were prepared bearing protective PEG chains, a folate targeting ligand and EDTA or DTPA chelate moieties. Their relatively high water relaxivity values coupled with biodegradability of the hyperbranched scaffold, folate receptor specificity render these non-toxic dendritic polymers promising candidates for MRI applications.  相似文献   

18.
Large macromolecular MRI contrast agents with albumin or dendrimer cores are useful for imaging blood vessels. However, their prolonged retention is a major limitation for clinical use. Although smaller dendrimer-based MRI contrast agents are more quickly excreted by the kidneys, they are also able to visualize vascular structures better than Gd-DTPA due to less extravasation. Additionally, unlike Gd-DTPA, they transiently accumulate in renal tubules and thus also can be used to visualize renal structural and functional damage. However, these dendrimer agents are retained in the body for a prolonged time. The purpose of this study was to obtain information from which a macromolecular dendrimer-based MRI contrast agents feasible for use in further clinical studies could be chosen. Six small dendrimer-based MRI contrast agents were synthesized, and their pharmacokinetics, whole-body retention, and dynamic MRI were evaluated in mice to determine an optimal agent in comparison to Gd-[DTPA]-dimeglumine. Diaminobutane (DAB) dendrimer-based agents cleared more rapidly from the body than polyamidoamine (PAMAM) dendrimer-based agents with the same numbers of branches. Smaller dendrimer conjugates were more rapidly excreted from the body than the larger dendrimer conjugates. Since PAMAM-G2, DAB-G3, and DAB-G2 dendrimer-based contrast agents showed relatively rapid excretion, these three conjugates might be acceptable for use in further clinical applications.  相似文献   

19.
Numerous macromolecular MRI contrast agents prepared employing relatively simple chemistry may be readily available that can provide sufficient enhancement for multiple applications. These agents operate using a approximately 100-fold lower concentration of gadolinium ions in comparison to the necessary concentration of iodine employed in CT imaging. Herein, we describe some of the general potential directions of macromolecular MRI contrast agents using our recently reported families of dendrimer-based agents as examples. Changes in molecular size altered the route of excretion. Smaller-sized contrast agents less than 60 kDa molecular weight were excreted through the kidney resulting in these agents being potentially suitable as functional renal contrast agents. Hydrophilic and larger-sized contrast agents were found better suited for use as blood pool contrast agents. Hydrophobic variants formed with polypropylenimine diaminobutane dendrimer cores created liver contrast agents. Larger hydrophilic agents are useful for lymphatic imaging. Finally, contrast agents conjugated with either monoclonal antibodies or with avidin are able to function as tumor-specific contrast agents, which also might be employed as therapeutic drugs for either gadolinium neutron capture therapy or in conjunction with radioimmunotherapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号