共查询到20条相似文献,搜索用时 0 毫秒
1.
As any child knows, the first step in counting is summing up individual elements, yet the brain mechanisms responsible for this process remain obscure. Here we show, for the first time, that a population of neurons in the lateral intraparietal area of monkeys encodes the total number of elements within their classical receptive fields in a graded fashion, across a wide range of numerical values (2-32). Moreover, modulation of neuronal activity by visual quantity developed rapidly, within 100 ms of stimulus onset, and was independent of attention, reward expectations, or stimulus attributes such as size, density, or color. The responses of these neurons resemble the outputs of "accumulator neurons" postulated in computational models of number processing. Numerical accumulator neurons may provide inputs to neurons encoding specific cardinal values, such as "4," that have been described in previous work. Our findings may explain the frequent association of visuospatial and numerical deficits following damage to parietal cortex in humans. 相似文献
2.
It has long been known that the brain is limited in the amount of sensory information that it can process at any given time. A well-known form of capacity limitation in vision is the set-size effect, whereby the time needed to find a target increases in the presence of distractors. The set-size effect implies that inputs from multiple objects interfere with each other, but the loci and mechanisms of this interference are unknown. Here we show that the set-size effect has a neural correlate in competitive visuo-visual interactions in the lateral intraparietal area, an area related to spatial attention and eye movements. Monkeys performed a covert visual search task in which they discriminated the orientation of a visual target surrounded by distractors. Neurons encoded target location, but responses associated with both target and distractors declined as a function of distractor number (set size). Firing rates associated with the target in the receptive field correlated with reaction time both within and across set sizes. The findings suggest that competitive visuo-visual interactions in areas related to spatial attention contribute to capacity limitations in visual searches. 相似文献
3.
4.
Veronika Zlatkina Michael Petrides 《Proceedings. Biological sciences / The Royal Society》2014,281(1797)
Distinct parts of the intraparietal sulcal cortex contribute to sensorimotor integration and visual spatial attentional processing. A detailed examination of the morphological relations of the different segments of the complex intraparietal sulcal region in the human brain in standard stereotaxic space, which is a prerequisite for detailed structure-to-function studies, is not available. This study examined the intraparietal sulcus (IPS) and the related sulcus of Jensen in magnetic resonance imaging brain volumes registered in the Montreal Neurological Institute stereotaxic space. It was demonstrated that the IPS is divided into two branches: the anterior ramus and the posterior ramus of the IPS, often separated by a submerged gyral passage. The sulcus of Jensen emerges between the anterior and posterior rami of the IPS, and its ventral end is positioned between the first and second caudal branches of the superior temporal sulcus. In a small number of brains, the sulcus of Jensen may merge superficially with the first caudal branch of the superior temporal sulcus. The above morphological findings are discussed in relation to previously reported functional neuroimaging findings and provide the basis for future exploration of structure-to-function relations in the posterior parietal region of individual subjects. 相似文献
5.
Experimental studies have shown that responses of ventral intraparietal area (VIP) neurons specialize in head movements and the environment near the head. VIP neurons respond to visual, auditory, and tactile stimuli, smooth pursuit eye movements, and passive and active movements of the head. This study demonstrates mathematical structure on a higher organizational level created within VIP by the integration of a complete set of variables covering face-infringement. Rather than positing dynamics in an a priori defined coordinate system such as those of physical space, we assemble neuronal receptive fields to find out what space of variables VIP neurons together cover. Section 1 presents a view of neurons as multidimensional mathematical objects. Each VIP neuron occupies or is responsive to a region in a sensorimotor phase space, thus unifying variables relevant to the disparate sensory modalities and movements. Convergence on one neuron joins variables functionally, as space and time are joined in relativistic physics to form a unified spacetime. The space of position and motion together forms a neuronal phase space, bridging neurophysiology and the physics of face-infringement. After a brief review of the experimental literature, the neuronal phase space natural to VIP is sequentially characterized, based on experimental data. Responses of neurons indicate variables that may serve as axes of neural reference frames, and neuronal responses have been so used in this study. The space of sensory and movement variables covered by VIP receptive fields joins visual and auditory space to body-bound sensory modalities: somatosensation and the inertial senses. This joining of allocentric and egocentric modalities is in keeping with the known relationship of the parietal lobe to the sense of self in space and to hemineglect, in both humans and monkeys. Following this inductive step, variables are formalized in terms of the mathematics of graph theory to deduce which combinations are complete as a multidimensional neural structure that provides the organism with a complete set of options regarding objects impacting the face, such as acceptance, pursuit, and avoidance. We consider four basic variable types: position and motion of the face and of an external object. Formalizing the four types of variables allows us to generalize to any sensory system and to determine the necessary and sufficient conditions for a neural center (for example, a cortical region) to provide a face-infringement space. We demonstrate that VIP includes at least one such face-infringement space. 相似文献
6.
Projections between areas 5 and 7 and the lateral suprasylvian gyrus (Clare-Bishop area) were investigated using anterograde degeneration techniques. This showed a topographic organization of projections from areas 5 and 7 to the lateral suprasylvian gyrus. Area 5 association fibers terminate mainly in the anterior portion of the lateral suprasylvian gyrus; this corresponds to the intermediate zone and anterior section of the posterior suprasylvian region. Area 7 efferents are located more caudally, terminating in the posterior section of the intermediate zone and in the posterior region, excluding the outer posterior limits. Fields 5 and 7 give rise to single efferent fibers terminating in the auditory cortex. Fibers from area 5 terminate in the medial ectosylvian and medial, sylvian gyri, i.e., in zones Al and AII or areas 22 and 50. A projection from area 7 terminates at the superior border of the medial ectosylvian gyrus, corresponding to the upper limit of zone A1 or areas 22 and 50.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 22, No. 6, pp. 739–745, November–December, 1990. 相似文献
7.
R. M. Benolken Maureen B. Maude Robert E. Anderson 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1976,107(3):339-347
Summary Photoreceptor membrane fractions of the lateral eye ofLimulus were solubilized in the detergent emulphogene, and three photobleachable materials were observed with respective
max values at 330nm±10nm, 450 nm±10 nm, and 530 nm±10 nm. A530 is the pigment which had been reported earlier by Hubbard and Wald (1960), and it can be separated from A330 and A450 on the basis of differential solubility in digitonin. Approximately the same number of incident quanta were required for a unit absorbance change at
max for all three pigments, but measurable photo-products were not observed after bleaching A330 and A450.We thank Daniel Inners for discussion and Thomas Wheeler and Vivian Leitner for assistance. This work was supported by NSF grants GB-33499 and BMS 75-07197, NIH grants EY-00871 and EY-00244, and The Institute of Ophthalmology, Houston. We also thank I.L. and Bertha Gordon Miller for their generous gift of the Cary 118C. 相似文献
8.
Summary Animals were acclimitized to a daily cycle of 15–25°C and a photoperiod of LD 12:12. Parietalectomized animals in an experimental thermal gradient (15°C–40°C, LD 12:12) selected significantly higher temperatures than controls at all hours of the day except from 0800–1200. These results suggest that the lizard parapineal plays a direct role in thermoregulation in addition to the indirect function as an illuminometer. 相似文献
9.
When we search for a target in a crowded visual scene, we often use the distinguishing features of the target, such as color or shape, to guide our attention and eye movements. To investigate the neural mechanisms of feature-based attention, we simultaneously recorded neural responses in the frontal eye field (FEF) and area V4 while monkeys performed a visual search task. The responses of cells in both areas were modulated by feature attention, independent of spatial attention, and the magnitude of response enhancement was inversely correlated with the number of saccades needed to find the target. However, an analysis of the latency of sensory and attentional influences on responses suggested that V4 provides bottom-up sensory information about stimulus features, whereas the FEF provides a top-down attentional bias toward target features that modulates sensory processing in V4 and that could be used to guide the eyes to a searched-for target. 相似文献
10.
Phase-locked responses in the Limulus lateral eye. Theoretical and experimental investigation. 总被引:1,自引:0,他引:1 下载免费PDF全文
The 1:1 phase locking of the neural discharge to sinusoidally modulated stimuli was investigated both theoretically and experimentally. On the theoretical side, a neural encoder model, the self-inhibited leaky integrator, was considered, and the phase of the locked impulse was computed for each frequency in the locking range by imposing the condition that the "leaky integral" u(t) of the driving signal should reach the threshold for the first time one stimulus period after the preceding impulse. As u(t) can be a nonmonotonic function, this approach leads to results that sometimes differ from those reported in the literature. It turns out that the phase excursion is often much smaller than the values of about 180 degrees predicted from previous analysis. Moreover, our analysis shows a peculiar effect; the phase locking frequency range narrows when the input modulation depth increases. The theoretical predictions are then compared with phase-locked discharge patterns recorded from visual cells of the Limulus lateral eye, stimulated by sinusoidally modulated light or depolarizing current. The phases of the locked spikes at each of a number of modulation frequencies have been measured. The predictions offered by the model fit the experimental data, although there are some difficulties in determining the effective driving signal. 相似文献
11.
The parameters describing the permeability of the parietal pleura to liquid and total plasma proteins were measured in five anesthetized adult dogs. Small areas of parietal pleura (approximately 1 cm2) and the underlying endothoracic fascia were exposed through resection of the skin and the intercostal muscles. The portion of the thorax containing the pleural windows was removed from the chest and fixed over a bath of whole autologous plasma, the inner parietal pleural surface facing the bath. Small hemispheric Perspex capsules (surface area 0.28 cm2) connected to a pressure manometer were glued to the pleural windows; a subatmospheric pressure was set into the capsule chamber to create step hydraulic transpleural pressure gradients (delta P) ranging from 5 to 60 cmH2O. Transpleural liquid flows (Jv) and protein concentration of the capsular filtrate (Cfilt) and of the plasma bath were measured at each delta P. The transpleural protein flux (Js) at each delta P was calculated by multiplying Jv by the corresponding Cfilt. The hydraulic conductivity (Lp) of the parietal pleura was obtained from the slope of the Jv vs. delta P linear regression. The average Lp from 14 capsules was 9.06 +/- 4.06 (SD) microliters.h-1.cmH2O-1.cm-2. The mathematical treatment of the Js vs. Jv relationship allowed calculation of the unique Peclet number at the maximal diffusional protein flux and a corresponding osmotic permeability coefficient for plasma protein of 1 x 10(-5) +/- 0.97 x 10(-5) cm/s. The reflection coefficient calculated from the slope of the linear phase of the Js vs. Jv relationship was 0.11 +/- 0.05.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
12.
N M Ipekchian 《Arkhiv anatomii, gistologii i émbriologii》1988,94(5):12-15
Layer-by-layer arrangement of the commissural and associative fibers has been studied in the cat parietal cortex. The commissural fibers are distributed in all the layers of the parietal cortex in the contralateral hemisphere, except the superficial part of the I layer. These fibers mainly terminate in the III, IV layers of the contralateral parietal cortex, though their termination in other layers is not excluded. The associative fibers of the parietal cortex are distributed in all the layers of the sensomotor area, except the superficial part of the I layer. They mainly terminate in the III, IV, V layers of the primary somatosensory and in the III, V layers of the motor cortex. 相似文献
13.
《The Journal of general physiology》1978,71(6):699-720
Inhibition in the Limulus lateral eye in situ is qualitatively similar to that in the excised eye. In both preparations ommatidia mutually inhibit one another, and the magnitude of the inhibitory effects are linear functions of the response rate of individual ommatidia. The strength of inhibition exerted between single ommatidia is also about the same for both preparations; however, stronger effects can converge on a single ommatidium in situ. At high levels of illumination of the retina in situ the inhibitory effects are often strong enough to produce sustained oscillations in the discharge of optic nerve fibers. The weaker inhibitory influences at low levels of illumination do not produce oscillations but decrease the variance of the optic nerve discharge. Thresholds for the inhibitory effects appear to be determined by both presynaptic and postsynaptic cellular processes. Our results are consistent with the idea that a single ommatidium can be inhibited by more of its neighbors in an eye in situ than in an excised eye. Leaving intact the blood supply to the eye appears to preserve the functional integrity of the retinal pathways which mediate inhibition. 相似文献
14.
A bird's eye view of the glutathione transferase field. 总被引:4,自引:0,他引:4
B Ketterer 《Chemico-biological interactions》2001,138(1):27-42
15.
Koorosh Mirpour James W. Bisley 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2013,368(1628)
When searching for an object, we usually avoid items that are visually different from the target and objects or places that have been searched already. Previous studies have shown that neural activity in the lateral intraparietal area (LIP) can be used to guide this behaviour; responses to task irrelevant stimuli or to stimuli that have been fixated previously in the trial are reduced compared with responses to potential targets. Here, we test the hypothesis that these reduced responses have a different genesis. Two animals were trained on a visual foraging task, in which they had to find a target among a number of physically identical potential targets (T) and task irrelevant distractors. We recorded neural activity and local field potentials (LFPs) in LIP while the animals performed the task. We found that LFP power was similar for potential targets and distractors but was greater in the alpha and low beta bands when a previously fixated T was in the response field. We interpret these data to suggest that the reduced single-unit response to distractors is a bottom-up feed-forward result of processing in earlier areas and the reduced response to previously fixated Ts is a result of active top-down suppression. 相似文献
16.
Evidence for medial/lateral specification and positional information within the presomitic mesoderm.
C Freitas S Rodrigues J B Charrier M A Teillet I Palmeirim 《Development (Cambridge, England)》2001,128(24):5139-5147
In the vertebrate embryo, segmentation is built on repetitive structures, named somites, which are formed progressively from the most rostral part of presomitic mesoderm, every 90 minutes in the avian embryo. The discovery of the cyclic expression of several genes, occurring every 90 minutes in each presomitic cell, has shown that there is a molecular clock linked to somitogenesis. We demonstrate that a dynamic expression pattern of the cycling genes is already evident at the level of the prospective presomitic territory. The analysis of this expression pattern, correlated with a quail/chick fate-map, identifies a 'wave' of expression travelling along the future medial/lateral presomitic axis. Further analysis also reveals the existence of a medial/lateral asynchrony of expression at the level of presomitic mesoderm. This work suggests that the molecular clock is providing cellular positional information not only along the anterior/posterior but also along the medial/lateral presomitic axis. Finally, by using an in vitro culture system, we show that the information for morphological somite formation and molecular segmentation is segregated within the medial/lateral presomitic axis. Medial presomitic cells are able to form somites and express segmentation markers in the absence of lateral presomitic cells. By contrast, and surprisingly, lateral presomitic cells that are deprived of their medial counterparts are not able to organise themselves into somites and lose the expression of genes known to be important for vertebrate segmentation, such as Delta-1, Notch-1, paraxis, hairy1, hairy2 and lunatic fringe. 相似文献
17.
Summary Subsequent to the injection of horseradish peroxidase into the parietal eye of adult Lacerta sicula, the course of the parietal nerve and its projections were determined.The parietal nerve enters the left habenular ganglion where it branches into a medial and a lateral route. Some nerve fibers decussate within the habenular commissure. Whereas this pathway exhibits a striking asymmetry at the level of the habenular ganglia, its projections to the dorsolateral nucleus of the thalamus, the periventricular hypothalamic area, the preoptic hypothalamic and telencephalic regions, and the pretectal area are arranged in a strictly symmetric manner. A possible innervation of tegmental areas could not be proven due to the presence of endogenous peroxidase within these regions. No parietal nerve fibers were observed in the optic tectum.In a few animals investigated, scattered labeled perikarya were located in the periventricular hypothalamic gray indicating a parietopetal innervation in Lacerta sicula.
The injection of horseradish peroxidase into one of the lateral eyes revealed terminal areas of the optic nerve within the preoptic region, and the thalamic and pretectal nuclei, displaying partial overlapping with the projections of the parietal nerve to these areas.From the present investigation further evidence is obtained that the pineal complex of lower vertebrates is a component of the photoneuroendocrine system. Particular emphasis is placed upon the nervous connections between the parietal eye and the hypothalamus, described for the first time in the present study.Supported by the Deutsche Forschungsgemeinschaft (Grant Ko 758/1)In partial fulfillment of the requirements of the degree of Dr. med., Faculty of Medicine, Justus Liebig University of Giessen 相似文献
18.
Patterns of optic nerve activity were computed for stationary step patterns of illumination from theoretical models of lateral inhibiton based on revised Hartlin-Ratliff equations. The computed response patterns contain well-defined Mach bands which match closely in amplitude and shape those recorded from single optic nerve fibers of the Limulus lateral eye. Theory and experiment show that the amplitude of the Mach bands is reduced by in inhibitory nonlinearity, the width of the Mach bands is approximately equal to the lateral dimension of the inhibitory field, but the shapes of the Mach bands are poor indices of the precise configuration of the inhibitory field. Theorems are proved establishing the equivalence of Mach-band patterns for models of different dimensions and a uniqueness condition for solutions of the piecewise linear model. 相似文献
19.
20.
Competing models of sensorimotor computation predict different topological constraints in the brain. Some models propose population coding of particular reference frames in anatomically distinct nodes, whereas others require no such dedicated subpopulations and instead predict that regions will simultaneously code in multiple, intermediate, reference frames. Current empirical evidence is conflicting, partly due to difficulties involved in identifying underlying reference frames. Here, we independently varied the locations of hand, gaze, and target over many positions while recording from the dorsal aspect of parietal area 5. We find that the target is?represented in a predominantly hand-centered reference frame here, contrasting with the relative code seen in dorsal premotor cortex and the mostly gaze-centered reference frame in the parietal reach region. This supports the hypothesis that different nodes of the sensorimotor circuit contain distinct and systematic representations, and this constrains the types of computational model that are neurobiologically relevant. 相似文献