共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of molecular recognition : JMR》2017,30(6)
The interaction of a recently certified kinase inhibitor Tofacitinib (TFB) with bovine serum albumin (BSA) has been studied, by spectroscopic and molecular docking studies. Spectrofluorimetric measurements at 3 different temperatures (288, 298, and 310 K) showed that TFB quench the intrinsic fluorescence of BSA upon forming a nonfluorescent complex. The intrinsic fluorescence data showed that TFB binds to BSA with binding constant (K b) of approximately 104M−1, affirming a significant affinity of TFB with BSA. The decrease in Stern‐Volmer quenching constant with increasing temperature exhibited the static mechanism of quenching. Negative value of ΔG (−6.94 ± 0.32 kcal·mol−1), ΔH (−7.87 ± 0.52 kcal·mol−1), and ΔS (−3.14 ± 0.42 cal·mol−1·K−1) at all 3 temperatures declared the reaction between BSA and TFB to be spontaneous and exothermic. Far‐UV circular dichroism spectroscopy results demonstrated an increase in helical content of BSA in the presence of TFB. Moreover, dynamic light scattering measurements showed that TFB resulted into a decrease in the hydrodynamic radii (from 3.6 ± 0.053 to 2.9 ± 0.02 nm) of BSA. Molecular docking studies confirmed that TFB binds near site II on BSA, hydrogen bonding, and hydrophobic interaction were involved in the BSA‐TFB complex formation. The present study characterizing the BSA‐TFB interaction could be significant towards gaining an insight into the drug pharmacokinetics and pharmacodynamics and also in the direction of rational drug designing with better competence, against emerging immune‐mediated diseases, ie, alopecia and rheumatoid arthritis. 相似文献
2.
Studies on the interaction between vincamine and human serum albumin: a spectroscopic approach 下载免费PDF全文
The interaction between vincamine (VCM) and human serum albumin (HSA) has been studied using a fluorescence quenching technique in combination with UV/vis absorption spectroscopy, Fourier transform infrared (FT–IR) spectroscopy, circular dichroism (CD) spectroscopy and molecular modeling under conditions similar to human physiological conditions. VCM effectively quenched the intrinsic fluorescence of HSA via static quenching. The binding constants were calculated from the fluorescence data. Thermodynamic analysis by Van't Hoff equation revealed enthalpy change (ΔH) and entropy change (ΔS) were ?4.57 kJ/mol and 76.26 J/mol/K, respectively, which indicated that the binding process was spontaneous and the hydrophobic interaction was the predominant force. The distance r between the donor (HSA) and acceptor (VCM) was obtained according to the Förster's theory of non‐radiative energy transfer and found to be 4.41 nm. Metal ions, viz., Na+, K+, Li+, Ni2+, Ca2+, Zn2+ and Al3+ were found to influence binding of the drug to protein. The 3D fluorescence, FT–IR and CD spectral results revealed changes in the secondary structure of the protein upon interaction with VCM. Furthermore, molecular modeling indicated that VCM could bind to the subdomain IIA (site I) of HSA. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
3.
Sharda Pasricha Deepti Sharma Himanshu Ojha Pragya Gahlot Mallika Pathak Mitra Basu Raman Chawla Sugandha Singhal Anju Singh Rajeev Goel Shrikant Kukreti Shefali Shukla 《Luminescence》2017,32(7):1252-1262
Chalcones possess various biological properties, for example, antimicrobial, anti‐inflammatory, analgesic, antimalarial, anticancer, antiprotozoal and antitubercular activity. In this study, naphthylchalcone derivatives were synthesized and characterized using 1H NMR 13C NMR, Fourier transform infrared and mass techniques. Yields for all derivatives were found to be >90%. Protein–drug interactions influence the absorption, distribution, metabolism and excretion (ADME) properties of a drug. Therefore, to establish whether the synthesized naphthylchalcone derivatives can be used as drugs, their binding interaction toward a serum protein (bovine serum albumin) was investigated using fluorescence, circular dichroism and molecular docking techniques under physiological conditions. Fluorescence quenching of the protein in the presence of naphthylchalcone derivatives, and other derived parameters such as association constants, number of binding sites and static quenching involving confirmed non‐covalent binding interactions in the protein–ligand complex were observed. Circular dichroism clearly showed changes in the secondary structure of the protein in the presence of naphthylchalcones, indicating binding between the derivatives and the serum protein. Molecular modelling further confirmed the binding mode of naphthylchalcone derivatives in bovine serum albumin. A site‐specific molecular docking study of naphthylchalcone derivatives with serum albumin showed that binding took place primarily in the aromatic low helix and then in subdomain II. The dominance of hydrophobic, hydrophilic and hydrogen bonding was clearly visible and was responsible for stabilization of the complex. 相似文献
4.
Interaction of Prussian blue nanoparticles with bovine serum albumin: a multi-spectroscopic approach
Hongyu Zhou Xin Shi Yuanjie Fan Zhiying He Ling Ye 《Journal of biomolecular structure & dynamics》2018,36(1):254-261
Owning to their exceptional properties, Prussian blue nanoparticles (PBNPs) are promising in a variety of biomedical applications. In this scenario, understanding of how PBNPs interact and behave in biological systems is essential. Herein, the interaction of PBNPs with protein was investigated. Specifically, the citric acid stabilized PBNPs with a size of 10 nm were synthesized and characterized. The interactions of these PBNPs with the model protein, bovine serum albumin (BSA), were then probed by spectroscopic methods. It was found that the BSA intrinsic fluorescence was quenched upon addition of PBNPs due to the static interaction, suggesting the binding of PBNPs with BSA. Moreover, the synchronous fluorescence and circular dichroism spectra indicated the conformational change of BSA due to the presence of PBNPs. 相似文献
5.
Recently, the great interests in manufacturing and application of metal oxide nanoparticles in commercial and industrial products have led to focus on the potential impact of these particles on biomacromolecules. In the present study, the interaction of copper oxide (CuO) nanoparticles with bovine serum albumin (BSA) was studied by spectroscopic techniques. The zeta potential value for BSA and CuO nanoparticles with average diameter of around 50 nm at concentration of 10 μM in the deionized (DI) water were ?5.8 and ?22.5 mV, respectively. Circular dichroism studies did not show any changes in the content of secondary structure of the protein after CuO nanoparticles interaction. Fluorescence data revealed that the fluorescence quenching of BSA by CuO nanoparticles was the result of the formed complex of CuO nanoparticles – BSA. Binding constants and other thermodynamic parameters were determined at three different temperatures. The hydrogen bond interactions are the predominant intermolecular forces to stabilize the CuO nanoparticle – BSA complex. This study provides important insight into the interaction of CuO nanoparticles with proteins, which may be of importance for further application of these nanoparticles in biomedical applications. 相似文献
6.
This study explores the binding interaction of thionine (TH) with bovine serum albumin (BSA) under physiological conditions (pH 7.40) using absorption, emission, synchronous emission, circular dichroism (CD) and three‐dimensional (3D) emission spectral studies. The results of emission titration experiments revealed that TH strongly quenches the intrinsic emission of BSA via a static quenching mechanism. The apparent binding constant (K) and number of binding sites (n) were calculated as 2.09 × 105 dm3/mol and n~1, respectively. The negative free energy change value for the BSA–TH system suggested that the binding interaction was spontaneous and energetically favourable. The results from absorption, synchronous emission, CD and 3D emission spectral studies demonstrated that TH induces changes in the microenvironment and secondary structure in BSA. Site marker competitive binding experiments revealed that the binding site of TH was located in subdomain IIA (Sudlow site I) of BSA. The molecular docking study further substantiates Sudlow site I as the preferable binding site of TH in BSA. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
7.
The binding of ofloxacin (OFLX) to human serum albumin (HSA) was investigated by fluorescence and circular dichroism (CD) techniques. The binding parameters have been evaluated by a fluorescence quenching method. Competitive binding measurements were performed in the presence of warfarin and ibuprofen and suggest binding to the warfarin site I of HSA. The distance r between donor (HSA) and acceptor (OFLX) was estimated according to the Forster's theory of non‐radiatiative energy transfer. CD spectra revealed that the binding of OFLX to HSA induced conformational changes in HSA. Molecular docking was performed and shows that for the lowest energy complex OFLX is located in site I of HSA, which correlate to the competitive binding experiments. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
8.
The binding interaction between temsirolimus, an important antirenal cancer drug, and HSA, an important carrier protein was scrutinized making use of UV and fluorescence spectroscopy. Hyper chromaticity observed in UV spectroscopy in the presence of temsirolimus as compared to free HSA suggests the formation of complex between HSA and temsirolimus. Fluorescence quenching experiments clearly showed quenching in the fluorescence of HSA in the presence of temsirolimus confirming the complex formation and also confirmed that static mode of interaction is operative for this binding process. Binding constant values obtained through UV and fluorescence spectroscopy reveal strong interaction; temsirolimus binds to HSA at 298 K with a binding constant of 2.9 × 104 M?1implying the strength of interaction. The negative Gibbs free energy obtained through Isothermal titration calorimetry as well as quenching experiments suggests that binding process is spontaneous. Molecular docking further provides an insight of various residues that are involved in this binding process; showing the binding energy to be -12.9 kcal/mol. CD spectroscopy was retorted to analyze changes in secondary structure of HSA; increased intensity in presence of temsirolimus showing changes in secondary structure of HSA induced by temsirolimus. This study is of importance as it provides an insight into the binding mechanism of an important antirenal cancer drug with an important carrier protein. Once temsirolimus binds to HSA, it changes conformation of HSA which in turn can alter the functionality of this important carrier protein and this altered functionality of HSA can be highlighted in variety of diseases. 相似文献
9.
Hu YJ Liu Y Sun TQ Bai AM Lü JQ Pi ZB 《International journal of biological macromolecules》2006,39(4-5):280-285
Fluorescence spectroscopy in combination with circular dichroism (CD) and UV–vis absorption spectroscopy were employed to investigate the binding of anti-inflammatory drug cromolyn sodium (Intal) to bovine serum albumin (BSA) under the physiological conditions with Intal concentrations of 0–6.4 × 10−5 mol L−1. In the mechanism discussion, it was proved that the fluorescence quenching of BSA by Intal is a result of the formation of Intal–BSA complex. Quenching constants were determined using the Stern–Volmer equation to provide a measure of the binding affinity between Intal and BSA. The thermodynamic parameters ΔG, ΔH, ΔS at different temperatures (298, 304, and 310 K) were calculated and the results indicate the electrostatic interactions play a major role in Intal–BSA association. Binding studies concerning the number of binding sites (n = 1) and apparent binding constant Kb were performed by fluorescence quenching method. Utilizing fluorescence resonant energy transfer (FRET) the distance R between the donor (BSA) and acceptor (Intal) has been obtained. Furthermore, CD and synchronous fluorescence spectrum were used to investigate the structural change of BSA molecules with addition of Intal, the results indicate that the secondary structure of BSA molecules was changed in the presence of Intal. 相似文献
10.
Investigation of the interaction between quercetin and human serum albumin by multiple spectra,electrochemical impedance spectra and molecular modeling 下载免费PDF全文
Quercetin (Qu), a flavonoid compound, exists widely in the human diet and exhibits a variety of pharmacological activities. This work is aimed at studying the effect of Qu on the bioactive protein, human serum albumin (HSA) under simulated biophysical conditions. Multiple spectroscopic methods (including fluorescence and circular dichroism), electrochemical impedance spectra (EIS) and molecular modeling were employed to investigate the interaction between Qu and HSA. The fluorescence quenching and EIS experimental results showed that the fluorescence quenching of HSA was caused by formation of a Qu–HSA complex in the ground state, which belonged to the static quenching mechanism. Based on the calculated thermodynamic parameters, it concluded that the interaction was a spontaneous process and hydrogen bonds combined with van der Waal's forces played a major role in stabilizing the Qu–HSA complex. Molecular modeling results demonstrated that several amino acids participated in the binding process and the formed Qu–HSA complex was stabilized by H‐bonding network at site I in sub‐domain IIA, which was further confirmed by the site marker competitive experiments. The evidence from circular dichroism (CD) indicated that the secondary structure and microenvironment of HSA were changed. Alterations in the conformation of HSA were observed with a reduction in the amount of α helix from 59.9% (free HSA) to 56% (Qu–HSA complex), indicating a slight unfolding of the protein polypeptides. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
11.
The binding interactions between megestrol acetate (MA) and bovine serum albumin (BSA) under simulated physiological conditions (pH 7.4) were investigated by fluorescence spectroscopy, circular dichroism and molecular modeling. The results revealed that the intrinsic fluorescence of BSA was quenched by MA due to formation of the MA–BSA complex, which was rationalized in terms of a static quenching procedure. The binding constant (Kb) and number of binding sites (n) for MA binding to BSA were 2.8 × 105 L/mol at 310 K and about 1 respectively. However, the binding of MA with BSA was a spontaneous process due to the negative ∆G0 in the binding process. The enthalpy change (∆H0) and entropy change (∆S0) were – 124.0 kJ/mol and –295.6 J/mol per K, respectively, indicating that the major interaction forces in the binding process of MA with BSA were van der Waals forces and hydrogen bonding. Based on the results of spectroscopic and molecular docking experiments, it can be deduced that MA inserts into the hydrophobic pocket located in subdomain IIIA (site II) of BSA. The binding of MA to BSA leads to a slight change in conformation of BSA but the BSA retained its secondary structure, while conformation of the MA has significant change after forming MA–BSA complex, suggesting that flexibility of the MA molecule supports the binding interaction of BSA with MA. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
12.
In this report, we have investigated the binding affinity of tofacitinib with human serum albumin (HSA) under simulated physiological conditions by using UV–visible spectroscopy, fluorescence quenching measurements, dynamic light scattering (DLS), differential scanning calorimetry (DSC) and molecular docking methods. The obtained results demonstrate that fluorescence intensity of HSA gets quenched by tofacitinib and quenching occurs in static manner. Binding parameters calculated from modified Stern–Volmer equation shows that the drug binds to HSA with a binding constant in the order of 105. Synchronous fluorescence data deciphered the change in the microenvironment of tryptophan residue in HSA. UV spectroscopy and DLS measurements deciphered complex formation and reduction in hydrodynamic radii of the protein, respectively. Further DSC results show that tofacitinib increases the thermo stability of HSA. Hydrogen bonding and hydrophobic interaction are the main binding forces between HSA and tofacitinib as revealed by docking results. 相似文献
13.
Urszula Śliwińska-Hill Katarzyna Wiglusz 《Journal of biomolecular structure & dynamics》2013,31(14):3731-3739
AbstractThe interaction between glycated human serum albumin (gHSA) and folic acid (FA) was investigated by various spectroscopic techniques, such as fluorescence, circular dichroism, UV–vis absorption spectroscopy and electrophoretic light scattering technique. These methods characterize the binding properties of an albumin–folic acid system. The binding constants values (Ka) at 300 and 310 K are about 104 M?1. The standard enthalpy change (ΔH) and the standard entropy change (ΔS) were calculated to be ~?20?kJ mol?1 and ~16 J mol?1 K?1, respectively, which indicate characteristic electrostatic interactions between gHSA and folic acid. The CD studies showed that there are no significant conformational changes in the secondary structure of the protein. Moreover, the zeta potential measurements proved that under physiological conditions the gHSA–folic acid complex shows instability. No significant changes in the secondary structure of the protein and reversible drug binding are the desirable effect from pharmacological point of view.Communicated by Ramaswamy H. Sarma 相似文献
14.
Tajalli Ilm Chandel Gulam Rabbani MohsinVahid Khan Masihuz Zaman Parvez Alam Yasser E. Shahein 《Journal of biomolecular structure & dynamics》2018,36(1):54-67
Isoprenaline hydrochloride is a potential cardiovascular drug helps in the smooth functioning of the heart muscles. So, we have performed the binding study of ISO with BSA. This study was investigated by UV absorption, fluorescence, synchronous fluorescence, circular dichroism, etc. The analysis of intrinsic fluorescence data showed the low binding affinity of ISO. The binding constant Kb was 2.8 × 103 M-1 and binding stoichiometry (n) was approximately one and the Gibb’s free energy change at 310 K was determined to be -8.69 kcal mol?1. Negative Gibb’s free energy change shows the spontaneity of the BSA and ISO interaction. We have found ISO-induced alternation in the UV absorption, synchronous fluorescence and CD spectra in the absence and presence of the quencher indicates the complex formation. In synchronous fluorescence, red shift was obtained because of the complex formation of BSA and ISO. The distance (r) between the BSA (donor) and ISO (acceptor) was 2.89 nm, determined by FRET. DLS measurements interpreted complex formation due to the reduction in hydrodynamic radii of the protein in the presence of the drug. The binding site of ISO was found to be nearer to Trp 134 with the help of molecular docking and the ΔG° was found to be –10.2 kcal mol?1. The esterase activity result suggests that ISO acts as competitive inhibitor. Thus, this study would help to determine the binding capacity of the drug to the protein which may indicate the efficiency of diffusion of ISO into the blood for the treatment of heart diseases. 相似文献
15.
This study investigates the green synthesis of AgNPs from 1 mM aqueous AgNO3 using 10% leaf extract of Alstonia scholaris (Chhatim) for its wide antibacterial and medicinal properties. The synthesized AgNPs were duly characterized by UV–vis (UV–vis) spectrophotometry, dynamic light scattering, field emission scanning electron microscopy, transmission electron microscopy, energy-dispersive analysis of X-rays spectroscopy, and fourier transform infrared spectrophotometry. Their antibacterial property was tested against Escherichia coli (ATCC 25922), and minimum inhibitory concentrations of 0.08 nM of AgNPs were obtained, which suggests improved therapeutic efficacy. We report the interaction of human serum albumin (HSA) with this nanoparticle, and this interaction was studied by UV–vis, fluorescence, and circular dichroism spectroscopies and zeta potential measurement at room temperature. It was found that the AgNPs form a complex with HSA, which may cause the slightest change in the conformation of HSA. The calculated values of Stern-Volmer quenching constant, binding constant, and binding distance were 1.82 × 107 M−1, 1.58 × 107 M−1, and 3.68 nm, respectively. Therefore, in future, the present study may provide useful information to design a better antibacterial compound by using green synthesized nanoparticles with fewer side effects. 相似文献
16.
Bian H Li M Yu Q Chen Z Tian J Liang H 《International journal of biological macromolecules》2006,39(4-5):291-297
The study on the interaction of artemisinin with bovine serum albumin (BSA) has been undertaken at three temperatures, 289, 296 and 303 K and investigated the effect of common ions and UV C (253.7 nm) irradiation on the binding of artemisinin with BSA. The binding mode, the binding constant and the protein structure changes in the presence of artemisinin in aqueous solution at pH 7.40 have been evaluated using fluorescence, UV–vis and Fourier transform infrared (FT-IR) spectroscopy. The quenching constant Kq, Ksv and the association constant K were calculated according to Stern–Volmer equation based on the quenching of the fluorescence of BSA. The thermodynamic parameters, the enthalpy (ΔH) and the entropy change (ΔS) were estimated to be −3.625 kJ mol−1 and 107.419 J mol−1 K−1 using the van’t Hoff equation. The displacement experiment shows that artemisinin can bind to the subdomain IIA. The distance between the tryptophan residues in BSA and artemisinin bound to site I was estimated to be 2.22 nm using Föster's equation on the basis of fluorescence energy transfer. The decreased binding constant in the presence of enough common ions and UV C exposure, indicates that common ions and UV C irradiation have effect on artemisinin binding to BSA. 相似文献
17.
Spectroscopic insight into the interaction of bovine serum albumin with imidazolium‐based ionic liquids in aqueous solution 下载免费PDF全文
The study of protein–ionic liquid interactions is very important because of the widespread use of ionic liquids as protein stabilizer in the recent years. In this work, the interaction of bovine serum albumin (BSA) with different imidazolium‐based ionic liquids (ILs) such as [1‐ethyl‐3‐methyl‐imidazolium ethyl sulfate (EmimESO4), 1‐ethyl‐3‐methyl‐imidazolium chloride (EmimCl) and 1‐butyl‐3‐methyl‐imidazolium chloride (BmimCl)] has been investigated using different spectroscopic techniques. The intrinsic fluorescence of BSA is quenched by ILs by the dynamic mechanism. The thermodynamic analysis demonstrates that very weak interactions exist between BSA and ILs. 8‐Anilino‐1‐naphthalenesulfonic acid (ANS) fluorescence and lifetime measurements reveal the formation of the compact structure of BSA in IL medium. The conformational changes of BSA were monitored by CD analysis. Temperature‐dependent ultraviolet (UV) measurements were done to study the thermal stability of BSA. The thermal stability of BSA in the presence of ILs follows the trend EmimESO4 > EmimCl > BmimCl and in the presence of more hydrophobic IL, destabilization increases rapidly as a function of concentration. 相似文献
18.
The investigation of the interaction between orientin and bovine serum albumin by spectroscopic analysis 下载免费PDF全文
In this paper, the interaction between orientin and bovine serum albumin (BSA) was examined using fluorescence and absorbance spectroscopy. The analysis of the quenching mechanism was done using Stern–Volmer plots which exhibit upward (positive) deviation. A linear response to orientin was shown in the concentration range between 3 and 50 μM. The experimental results showed the presence of a static quenching process between orientin and BSA. The thermodynamic parameters ΔH, ΔS and ΔG were also calculated and suggested that the hydrophobic and electrostatic interactions played an important role in the interaction between orientin and BSA. Furthermore, the distances between BSA and orientin were determined according to Förster non‐radiation energy transfer theory. In addition, the results of the synchronous fluorescence obtained indicated that the binding of orientin with BSA could affect conformation in BSA. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
19.
Md. Zahirul Kabir Shevin R. Feroz Abdul Kadir Mukarram Zazali Alias Saharuddin B. Mohamad 《Journal of biomolecular structure & dynamics》2016,34(8):1693-1704
Interaction of a tyrosine kinase inhibitor, vandetanib (VDB), with the major transport protein in the human blood circulation, human serum albumin (HSA), was investigated using fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and molecular docking analysis. The binding constant of the VDB–HSA system, as determined by fluorescence quenching titration method was found in the range, 8.92–6.89?×?103?M?1 at three different temperatures, suggesting moderate binding affinity. Furthermore, decrease in the binding constant with increasing temperature revealed involvement of static quenching mechanism, thus affirming the formation of the VDB–HSA complex. Thermodynamic analysis of the binding reaction between VDB and HSA yielded positive ΔS (52.76 J?mol?1 K?1) and negative ΔH (?6.57?kJ?mol?1) values, which suggested involvement of hydrophobic interactions and hydrogen bonding in stabilizing the VDB–HSA complex. Far-UV and near-UV CD spectral results suggested alterations in both secondary and tertiary structures of HSA upon VDB-binding. Three-dimensional fluorescence spectral results also showed significant microenvironmental changes around the Trp residue of HSA consequent to the complex formation. Use of site-specific marker ligands, such as phenylbutazone (site I marker) and diazepam (site II marker) in competitive ligand displacement experiments indicated location of the VDB binding site on HSA as Sudlow’s site I (subdomain IIA), which was further established by molecular docking results. Presence of some common metal ions, such as Ca2+, Zn2+, Cu2+, Ba2+, Mg2+, and Mn2+ in the reaction mixture produced smaller but significant alterations in the binding affinity of VDB to HSA. 相似文献
20.
The aim of this present work is to investigate the interaction between amifostine and human serum albumin (HSA) in simulated physiological conditions by spectroscopic methods to reveal potential toxic effects of the drug. The results reflected that amifostine caused fluorescence quenching of HSA through a static quenching process, which was further confirmed by the electrochemical experiments. The binding constants at 290, 297 and 304 K were obtained as 2.53 × 105/M, 8.13 × 104/M and 3.59 × 104/M, respectively. There may be one binding site of amifostine on HSA. The thermodynamic parameters indicated that the interaction between amifostine and HSA was driven mainly by hydrogen bonding and electrostatic forces. Synchronous fluorescence spectra, circular dichroism and Fourier transform infrared spectroscopy results showed amifostine binding slightly changed the conformation of HSA with secondary structural content changes. Förster resonance energy transfer study revealed high possibility of energy transfer with amifostine‐Trp‐214 distance of 3.48 nm. The results of the present study may provide valuable information for studying the distribution, toxicological and pharmacological mechanisms of amifostine in vivo. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献