首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 699 毫秒
1.
In this study, shear‐induced flocculation modeling of Chlorella sp. microalgae was conducted by combination of population balance modeling and CFD. The inhomogeneous Multiple Size Group (MUSIG) and the Euler–Euler two fluid models were coupled via Ansys‐CFX‐15 software package to achieve both fluid and particle dynamics during the flocculation. For the first time, a detailed model was proposed to calculate the collision frequency and breakage rate during the microalgae flocculation by means of the response surface methodology as a tool for optimization. The particle size distribution resulted from the model was in good agreement with that of the jar test experiment. Furthermore, the subsequent sedimentation step was also examined by removing the shear rate in both simulations and experiments. Consequently, variation in the shear rate and its effects on the flocculation behavior, sedimentation rate and recovery efficiency were evaluated. Results indicate that flocculation of Chlorella sp. microalgae under shear rates of 37, 182, and 387 s?1 is a promising method of pre‐concentration which guarantees the cost efficiency of the subsequent harvesting process by recovering more than 90% of the biomass. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:160–174, 2018  相似文献   

2.
Microalgae harvesting via pH induced flocculation along with utilization of recovered medium after flocculation is one of the most economical methods for separating the microalgal biomass in order to reduce the dewatering cost. In this study, optimization of marine and freshwater microalgae flocculation by pH adjustment was investigated via central composite design methodology. One molar of KOH and NaOH solutions were used to increase the pH level of the microalgal culture. Increasing pH value of the medium provided the highest flocculation efficiency up to 92.63 and 86.18% with pH adjusted to 10.5 with KOH and NaOH solutions for marine microalgae Nannochloropsis oculata and freshwater microalgae Chlorella minutissima, respectively. Also, it was revealed that microalgae cells were still alive after flocculation process and their biochemical composition was not changed, and flocculated medium can be used again for the next microalgal production. According to the results, it can be said that this method is cheap and effective, simple to operate and provides the utilization of flocculated medium again.  相似文献   

3.
微藻可生产不饱和脂肪酸及色素等多种高附加值产品,同时也可用来生产可再生清洁能源如生物柴油等,具有良好的应用前景。但是,目前微藻细胞的采收成本高居不下,已成为限制微藻生物技术大规模应用的重要因素之一。与其他方法相比,絮凝采收成本低、操作简便,是很有应用前景的采收方法。本文综述了国内外利用化学絮凝、物理絮凝及生物絮凝等方法对不同微藻细胞进行采收的研究,重点对生物絮凝方法进行了总结。利用微生物絮凝剂及微藻细胞的自絮凝进行微藻生物量的回收,是微藻采收技术中环境友好、低成本和行之有效的新方法之一。  相似文献   

4.
5.
Although microalgae are considered as a promising feedstock for biofuels, the energy efficiency of the production process needs to be significantly improved. Due to their small size and low concentration in the culture medium, cost‐efficient harvesting of microalgae is a major challenge. In this study, the use of electro‐coagulation–flocculation (ECF) as a method for harvesting a freshwater (Chlorella vulgaris) and a marine (Phaeodactylum tricornutum) microalgal species is evaluated. ECF was shown to be more efficient using an aluminum anode than using an iron anode. Furthermore, it could be concluded that the efficiency of the ECF process can be substantially improved by reducing the initial pH and by increasing the turbulence in the microalgal suspension. Although higher current densities resulted in a more rapid flocculation of the microalgal suspension, power consumption, expressed per kg of microalgae harvested, and release of aluminum were lower when a lower current density was used. The aluminum content of the harvested microalgal biomass was less than 1% while the aluminum concentration in the process water was below 2 mg L−1. Under optimal conditions, power consumption of the ECF process was around 2 kWh kg−1 of microalgal biomass harvested for Chlorella vulgaris and ca. 0.3 kWh kg−1 for Phaeodactylum tricornutum. Compared to centrifugation, ECF is thus more energy efficient. Because of the lower power consumption of ECF in seawater, ECF is a particularly attractive method for harvesting marine microalgae. Biotechnol. Bioeng. 2011;108: 2320–2329. © 2011 Wiley Periodicals, Inc.  相似文献   

6.
微藻作为一种有巨大应用前景的生物质资源,在环境保护、废水处理和清洁能源等领域广泛应用。但是微藻采收成本过高严重限制了微藻产业的发展,因此,寻找一种经济、环保、高效的采收技术对促进微藻产业的发展具有十分重要的意义。本文分析了常用微藻采收技术的优缺点,包括离心分离、沉降、过滤、浮选和絮凝技术,重点论述絮凝技术在微藻采收方面的研究进展,以期为微藻高效、低成本采收方案的选择及其研究方向提供参考。  相似文献   

7.
Harvesting of microalgae by bio-flocculation   总被引:2,自引:0,他引:2  
The high-energy input for harvesting biomass makes current commercial microalgal biodiesel production economically unfeasible. A novel harvesting method is presented as a cost and energy efficient alternative: the bio-flocculation by using one flocculating microalga to concentrate the non-flocculating microalga of interest. Three flocculating microalgae, tested for harvesting of microalgae from different habitats, improved the sedimentation rate of the accompanying microalga and increased the recovery of biomass. The advantages of this method are that no addition of chemical flocculants is required and that similar cultivation conditions can be used for the flocculating microalgae as for the microalgae of interest that accumulate lipids. This method is as easy and effective as chemical flocculation which is applied at industrial scale, however in contrast it is sustainable and cost-effective as no costs are involved for pre-treatment of the biomass for oil extraction and for pre-treatment of the medium before it can be re-used.  相似文献   

8.
Flocculation of microalgae using cationic starch   总被引:2,自引:0,他引:2  
Due to their small size and low concentration in the culture medium, cost-efficient harvesting of microalgae is a major challenge. We evaluated the potential of cationic starch as a flocculant for harvesting microalgae using jar test experiments. Cationic starch was an efficient flocculant for freshwater (Parachlorella, Scenedesmus) but not for marine microalgae (Phaeodactylum, Nannochloropsis). At high cationic starch doses, dispersion restabilization was observed. The required cationic starch dose to induce flocculation increased linearly with the initial algal biomass concentration. Of the two commercial cationic starch flocculants tested, Greenfloc 120 (used in wastewater treatment) was more efficient than Cargill C*Bond HR 35.849 (used in paper manufacturing). For flocculation of Parachlorella using Greenfloc 120, the cationic starch to algal biomass ratio required to flocculate 80% of algal biomass was 0.1. For Scenedesmus, a lower dose was required (ratio 0.03). Flocculation of Parachlorella using Greenfloc 120 was independent of pH in the pH range of 5 to 10. Measurements of the maximum quantum yield of PSII suggest that Greenfloc 120 cationic starch was not toxic to Parachlorella. Cationic starch may be used as an efficient, nontoxic, cost-effective, and widely available flocculant for harvesting microalgal biomass.  相似文献   

9.
《Biomass》1988,15(3):187-199
Flocculation is an essential step in the concentration and harvesting of microalgae from aquatic media. Salinity of brackish water and sea water requires high flocculant dosages and renders flocculation less effective than in freshwater algal media. Experiments with the marine microalgae Isochrysis galbana and Chlorella stigmatophora showed that effective alum or ferric chloride flocculation was obtained only with dosages which are 5 to 10 times higher than the dosages required for the flocculation of freshwater microalgae. The flocculant dosages required for removing over 90% of the algae from suspensions were found to increase linearly with salinity as expressed in ionic strength. High salinity was found to inhibit flocculation with polyelectrolytes which are quite effective in freshwater algae flocculation. This inhibition was diminished at reduced salinity levels and effective flocculation was attained at salinity levels of 5 g/liter and below, which is typical of desert brackish water. Two methods were found to induce flocculation in sea water: (a) combining polyelectrolytes with inorganic flocculants such as ferric chloride or alum, and (b) ozone oxidation pretreatment followed by flocculation with inorganic flocculants.  相似文献   

10.
Microbial flocculation is investigated as a separation technique for harvesting marine microalgae for the production of biodiesel. Organic carbon (acetate, glucose or glycerine) was used as substrate for the growth of flocculating microbes in situ. Under stress, due to nutrient depletion, these microbes produced extracellular polymeric substances that promote flocculation of the coccolithophorid alga, Pleurochrysis carterae. Maximum recovery efficiency was achieved at low concentration of organic substrate (0.1 g L−1) and with a long mixing time (24 h); an average recovery efficiency of over 90% and a concentration factor of 226 were achieved. The recovery efficiency is positively correlated with mixing time (R 2 = 0.90). The concentration factor is negatively correlated to the product of substrate concentration and mixing time (R 2 = 0.73). The microalgae cells were not under stress and remained viable, thus potentially allowing media to be reused in large-scale processes without further treatment. Other advantages of the process are that no metallic flocculants were required and the organic substrates are readily available, e.g. glycerine is a by-product of biodiesel production and acetic acid may be produced by anaerobic digestion of the biomass residue after lipid extraction. Further research is required to optimise the process.  相似文献   

11.
Biodiesel from microalgae is recognized as a desirable, renewable biofuel to replace petroleum-derived transport fuels. However, the efficient harvesting of microalgae is a major hurdle for commercialization. Therefore, the development of a cost-effective harvesting method is essential to reduce production cost. A partial factorial design was used to screen the main factors involved, which were the concentration of FeCl3, the bioflocculant, and the time of slow mixing. Response surface methodology (RSM) was used to further investigate the optimal conditions for these factors on flocculation of Botryococcus braunii. Analysis of variance and other relevant tests confirmed the validity of the suggested model. The optimal conditions inferred from the obtained equation were 0.79 mM FeCl3, 0.58 % (v/v) bioflocculant, and 180 sec of slow mixing for 1.1 g DCW L?1 of B. braunii. The flocculating activity under these conditions was 90.6 %. By using RSM, the optimal conditions for flocculation of B. braunii could be reached more quickly and efficiently.  相似文献   

12.
[背景]海科贝特氏菌(Cobetia marina)可产生大量具有絮凝活性的胞外产物,可视为一种新型的生物絮凝剂。高温栅藻(Desmodesmus sp.F51)是一种具有较高叶黄素含量的微藻,被认为是一种新兴的叶黄素来源,但利用该生物絮凝剂高效富集高温栅藻的相关研究迄今尚未见报道。[目的]以高温栅藻为对象,研究该新型生物絮凝剂的絮凝效率,并对絮凝机理进行初步探讨。[方法]探索在不同生长阶段微藻培养液添加生物絮凝剂、添加量、絮凝时间、pH对絮凝效率的影响,分析生物絮凝剂的功能基团,并测定在不同pH条件下添加生物絮凝剂前后高温栅藻的Zeta电位变化,以及在显微镜下分析藻细胞在添加生物絮凝剂前后的形态。[结果]在高温栅藻生长至稳定期(pH 8.0)添加2 mL生物絮凝剂,絮凝15 min絮凝效果最佳,达82.1%。傅里叶红外光谱(fourier transform infrared spectroscopy,FTIR)显示了多糖及酰胺结构的特征吸收峰,由此推测生物絮凝剂主要是多糖的混合物,含有少量蛋白质。根据Bradford法测定絮凝剂中蛋白含量约为0.4%(质量比),通过苯酚-硫酸法测定总糖质量分数约为34.5%(质量比),与FTIR分析结果基本相符。生物絮凝剂在pH 4.0-11.0保持60%以上的絮凝效率,说明无论是酸性或是碱性条件下絮凝效率都较高,结合Zeta电位的分析表明,推测生物絮凝剂对高温栅藻的絮凝机理中占主导地位的可能是吸附架桥作用。[结论]该研究对微藻生物絮凝具有重要的理论和实践意义。  相似文献   

13.
《Process Biochemistry》2014,49(4):681-687
Phaeodactylum tricornutum is an economically important species of microalgae that is widely used in aquaculture, and it is rich in bioactive substances including eicosapentaenoic acid and fucoxanthin. The major bottleneck for industrialization of this species is harvesting. Flocculation is used to harvest microalgae, thus the selection of flocculants is of great importance. In this study, we compared the flocculation effect of four different chemicals (ferric chloride, aluminum sulphate, polyaluminum chloride, and aluminum potassium sulphate) on P. tricornutum. Microexamination showed that ferric and aluminum salts had similar flocculation effects on the algae. Growth and chlorophyll fluorescence measurements showed that P. tricornutum can be re-cultured after flocculation. Pigment analysis showed that flocculation did not result in degradation of fucoxanthin, which suggests that the four flocculants tested may be useful for industrial applications. The results also showed that ferric chloride was the best flocculant for harvesting P. tricornutum when the target product was fucoxanthin, as it had the least influence on the physiological activity of P. tricornutum and it did not lead to degradation of cell components. In contrast, aluminum is poisonous to the nervous system of animals and humans. In addition, the culture medium can be recycled after flocculation by ferric chloride.  相似文献   

14.
Cost-efficient harvesting of microalgae is a major challenge due to their small size and often low concentration in the culture medium. The flocculation efficacy of different inorganic and organic amendments was evaluated on various microalgae genera—one strain each belonging to Chlamydomonas, Chlorococcum, two of Botryococcus, and of Chlorella. An improvised medium comprising of commercial grade urea, single super phosphate, and muriate of potash was used to grow the microalgae for flocculation experiments. High pH induced increased flocculation efficiency (72–76 %) in selected microalgal strains. Ferric chloride was found to be the most efficient for most of the microalgal strains, while maize starch and rice starch proved superior for Chlorella sp. MCC6 and Botryococcus sp. MCC32. Although the highest flocculation efficiency was obtained with inorganic flocculant, i.e., ferric chloride (87.3 %) with Botryococcus MCC31, this was comparable with rice starch (86.8 %) for Botryococcus MCC32. This study showed that widely available cheaper biopolymers such as rice starch, maize, and potato starch can be promising flocculants due to their better harvesting efficiency (>80 %) and low price, thereby contributing to economical production of biodiesel from algae.  相似文献   

15.
There are two major energy and cost constraints to bulk production of single cell microalgae for biofuels or feed: expensive culture systems with high capital costs and high energy requirements for mixing and gas exchange; and the cost of harvesting using high-speed continuous centrifugation for dewatering. This report deals with the latter; harvesting by flocculation where theory states that alkaline flocculants neutralize the repelling surface charge of algal cells, allowing them to coalesce into a floc. It had been assumed that with such electrostatic flocculation, the more cells to be flocculated, the more flocculant needed, in a linear stoichiometric fashion, rendering flocculation overly expensive. Counter to theory of electrostatic flocculation, we find that the amount of alkaline flocculant needed is a function of the logarithm of cell density, with dense cultures requiring an order of magnitude less base than dilute suspensions, with flocculation occurring at a lower pH. Various other theories abound that flocculation can be due to multi-valent cross-linking, or co-precipitation with phosphate or with magnesium and calcium, but are clearly not relevant with the flocculants we used. Monovalent bases that cannot cross-link or precipitate phosphate work with the same log-linear stoichiometry as the divalent bases, obviating those theories, leaving electrostatic flocculation as the only tenable theory of flocculation with the materials used. The cost of flocculation of dense cultures with this procedure should be below $1.00/T algae for mixed calcium:magnesium hydroxides.  相似文献   

16.
With increasing concerns regarding energy and environment, algae biofuel is generating considerable interest around the world. Nevertheless, the harvesting step required before downstream biomass processing is a major bottleneck. Commonly employed methods include addition of chemicals or use of mechanical equipment that increase dramatically the biofuel production cost. This review deals with naturally occurring processes that can help offset those costs by causing microalgae flocculation. Interaction theories are briefly reviewed. In addition, operational parameters such as pH, irradiance, nutrients, dissolved oxygen, and temperature effect on microalgae flocculation are evaluated. Finally, microalgae flocculation is also considered from an ecological point of view by taking advantage of their interaction with other microorganisms.  相似文献   

17.
We study how individual memory items are stored assuming that situations given in the environment can be represented in the form of synaptic-like couplings in recurrent neural networks. Previous numerical investigations have shown that specific architectures based on suppression or max units can successfully learn static or dynamic stimuli (situations). Here we provide a theoretical basis concerning the learning process convergence and the network response to a novel stimulus. We show that, besides learning “simple” static situations, a nD network can learn and replicate a sequence of up to n different vectors or frames. We find limits on the learning rate and show coupling matrices developing during training in different cases including expansion of the network into the case of nonlinear interunit coupling. Furthermore, we show that a specific coupling matrix provides low-pass-filter properties to the units, thus connecting networks constructed by static summation units with continuous-time networks. We also show under which conditions such networks can be used to perform arithmetic calculations by means of pattern completion.  相似文献   

18.
Microalgae are being considered as a promising raw material for biofuel production. However, rapid, efficient, and economic technologies for harvesting microalgae are essential for successful applications. In this study, the high–pH-induced flocculation method was applied to harvest marine Chlorella sp. strains. These algae could be concentrated up to approximately 20-fold by increasing pH using NaOH, with a flocculation efficiency of 90 %. When NaOH dosage was low (1 or 3 mM), the flocculation efficiency decreased considerably with the increase of biomass concentration. At higher NaOH dosage tested (5 or 7 mM), flocculation occurred quickly and efficiently, which tended to be independent of biomass concentration. In larger volumes, all strains were flocculated with similar efficiencies (approximately 90 %) after adding 5 mM NaOH. After flocculation, the flocculated algae cells could be re-cultured as inoculum, and the growth yields in flocculated medium were slightly higher than those from fresh medium. Additionally, for each strain, there were no significant differences in lipid extraction yield and fatty acid composition according to different harvesting methods. These results showed that the high–pH-induced flocculation method could be used to harvest marine Chlorella sp. for biofuel production successfully.  相似文献   

19.
Microalgae have received increasing attention as a potential feedstock for biofuel or biobased products. Forecasting the microalgae growth is beneficial for managers in planning pond operations and harvesting decisions. This study proposed a biomass forecasting system comprised of the Huesemann Algae Biomass Growth Model (BGM), the Modular Aquatic Simulation System in Two Dimensions (MASS2), ensemble data assimilation (DA), and numerical weather prediction Global Ensemble Forecast System (GEFS) ensemble meteorological forecasts. The novelty of this study is to seek the use of ensemble DA to improve both BGM and MASS2 model initial conditions with the assimilation of biomass and water temperature measurements and consequently improve short-term biomass forecasting skills. This study introduces the theory behind the proposed integrated biomass forecasting system, with an application undertaken in pseudo-real-time in three outdoor ponds cultured with Chlorella sorokiniana in Delhi, California, United States. Results from all three case studies demonstrate that the biomass forecasting system improved the short-term (i.e., 7-day) biomass forecasting skills by about 60% on average, comparing to forecasts without using the ensemble DA method. Given the satisfactory performances achieved in this study, it is probable that the integrated BGM-MASS2-DA forecasting system can be used operationally to inform managers in making pond operation and harvesting planning decisions.  相似文献   

20.
A rapid method for harvesting and immobilization of oleaginous microalgae using pellet-forming filamentous fungi was developed. The suitable conditions for pellet formation by filamentous fungi were determined. Among the strains tested, Trichoderma reesei QM 9414 showed superior pellet forming ability. Its pellets were used to harvest oleaginous microalga Scenedesmus sp. With increasing volume ratio of fungal pellets to microalgae culture up to 1:2, >94% of microalgal cells were rapidly harvested within 10 min. The ratio of fungal pellets could manipulate both harvesting time and initial concentration of microalgal cells in the pellets. The microalgae–fungal pellets were successfully used as immobilized cells for effective phytoremediation of secondary effluent from seafood processing plants under nonsterile condition. The chemical oxygen demand, total nitrogen, and total phosphorus removal were >74%, >44%, and >93%, respectively. The scanning electron microscopy showed that the microalgal cells were not only entrapped in the pellets but also got attached to the fungal hyphae with sticky exopolysaccharides, possibly secreted by the fungi. The extracted lipids from the pellets were mainly composed of C16–C18 (>83%) with their suitability as biodiesel feedstocks. This study has shown the promising strategy to rapidly harvest and immobilize microalgal cells and the possible application in phytoremediation of industrial effluent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号