首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A suitable method for extraction of floridoside phosphate synthase (FPS, UDP-galactose: sn-3-glycerol phosphate: 1→2′α-D-galactosyl transferase)from Porphyra perforata J. Ag. was developed. Two assay methods for enzyme activity were utilized, one measuring the amount of floridoside formed by using gas-liquid chromatography, the other measuring the sn-3-glycerol phosphate-dependent formation of UDP; both assays gave similar results. FPS is a soluble protein, and FPS activity in the extract as determined by the amount of product formed in vitro compared well with the in vivo rate of floridoside synthesis (4–7 μMmol product formed·h?1·g?1 fresh wt). The rate of product formation in vitro was linear up to 45 min and proportional to protein concentration in the assay mixture. The temperature optimum was 30–35° C. FPS was active over a range of pH values from 7.0–8.5. It was stable in concentrated solutions in the presence of 0.3 M ammonium sulfate, but activity was lost in diluted solution (protein concentration below 0.2 mg·mL?1) or below 0.2 M ion strength. The data suggest that FPS may be an oligomeric protein which occurs free in the cytoplasm or loosely bound to a membrane. It may also be a regulatory protein controlling the overall rate of synthesis of floridoside in vivo.  相似文献   

2.
Abstract

Extracellular lipase from an indigenous Bacillus aryabhattai SE3-PB was immobilized in alginate beads by entrapment method. After optimization of immobilization conditions, maximum immobilization efficiencies of 77%?±?1.53% and 75.99%?±?3.49% were recorded at optimum concentrations of 2% (w/v) sodium alginate and 0.2?M calcium chloride, respectively, for the entrapped enzyme. Biochemical properties of both free and immobilized lipase revealed no change in the optimum temperature and pH of both enzyme preparations, with maximum activity attained at 60?°C and 9.5, respectively. In comparison to free lipase, the immobilized enzyme exhibited improved stability over the studied pH range (8.5–9.5) and temperature (55–65?°C) when incubated for 3?h. Furthermore, the immobilized lipase showed enhanced enzyme-substrate affinity and higher catalytic efficiency when compared to soluble enzyme. The entrapped enzyme was also found to be more stable, retaining 61.51% and 49.44% of its original activity after being stored for 30 days at 4?°C and 25?°C, respectively. In addition, the insolubilized enzyme exhibited good reusability with 18.46% relative activity after being repeatedly used for six times. These findings suggest the efficient and sustainable use of the developed immobilized lipase for various biotechnological applications.  相似文献   

3.
Inhibition of novel biological pathways in Mycobacterium tuberculosis (Mtb) creates the potential for alternative approaches for treating drug-resistant tuberculosis. In vitro studies have shown that dithiocarbamate-derived β-carbonic anhydrase (β-CA) inhibitors Fc14–594?A and Fc14–584B effectively inhibit the activity of Mtb β-CA enzymes. We screened the dithiocarbamates for toxicity, and studied the in vivo inhibitory effect of the least toxic inhibitor on M. marinum in a zebrafish model. In our toxicity screening, Fc14–584B emerged as the least toxic and showed minimal toxicity in 5-day-old larvae at 300?µM concentration. In vitro inhibition of M. marinum showed that both compounds inhibited growth at a concentration of 75?µM. In vivo inhibition studies using 300?µM Fc14–584B showed significant (p?>?.05) impairment of bacterial growth in zebrafish larvae at 6?days post infection. Our studies highlight the therapeutic potential of Fc14–584B as a β-CA inhibitor against Mtb, and that dithiocarbamate compounds may be developed into potent anti-tuberculosis drugs.  相似文献   

4.
Carbonic anhydrase inhibitors (CAIs) are a class of pharmaceuticals used as antiglaucoma agents, diuretics and antiepileptics. Thus, discovery of novel CAIs has become of great importance in the recent years. In the current study, in vitro and in vivo inhibition effects of benzodiazepine drugs, diazepam and midazolam, on human erythrocytes carbonic anhydrase I and II isozymes were investigated. After purification of the isoenzymes, in vitro inhibition assays were performed and Ki values were determined to be of 141.5 μM and 40.7 μM for hCA I and of 5.11 μM and 0.58 μM against hCA II by the esterase activity assay, respectively. The drugs showed strong inhibitory effects on hCA II, in the same range as the clinically used sulphonamide acetazolamide. For in vivo studies, five adult male New Zealand White rabbits (3–4.2?kg) were selected for intravenous administrations of the drugs (2?mg/kg and 0.2?mg/kg body weight, respectively). The enzyme was significantly inhibited by 2?mg/kg diazepam (p?<?0.05), and 0.2?mg/kg midazolam (p?<?0.05) for up to 30?min following intravenous administration.  相似文献   

5.
The in vitro reproductive fitness on carrot discs of 10 Pratylenchus coffeae populations collected from different agricultural crops in different agro-ecological regions in Vietnam was studied and compared with the reproductive fitness of a P. coffeae population from Ghana. Few major differences in in vitro reproductive fitness on carrot discs among the 10 P. coffeae populations from Vietnam examined (with the exception of one population originally isolated from the roots of an unidentified ornamental tree and one population originally isolated from banana), and between these populations and the P. coffeae population originally isolated from banana in Ghana were observed. Our observations indicate that although the optimum temperature for reproduction of three P. coffeae populations from Vietnam examined is 25?°C to, at least, 30?°C, these populations are also tolerant to low temperatures (15–20?°C) enabling them to survive the low temperatures which occur during the winter in the northern and central parts of Vietnam.  相似文献   

6.
In the 1990s during wet seasons a new disease causing brown leaf spots on lettuce (Lactuca sativa) was found for the first time in many lettuce‐growing areas of Austria and Germany. The causal agent, a new pathogenic species called Septoria birgitae, may be responsible for total crop loss. To study how temperature, inoculum density and leaf wetness period influence disease incidence and severity of leaf spot on lettuce caused by S. birgitae, we carried out in vivo experiments in growth chambers and in the field. Additionally, we evaluated the relevance of infected plant debris acting as a primary inoculum source in soil for subsequent crops. S. birgitae produces spores over a wide temperature range between 5°C and 30°C, and can infect plants at temperatures between 10°C and 30°C, with an optimum between 20°C and 30°C. Spores of S. birgitae at a density of at least 103 conidia mL–1 are essential for disease outbreak on lettuce. Because leaf wetness is crucial for releasing conidia from pycnidia, we studied the impact of leaf wetness duration on disease development under various temperature conditions. For relevant leaf spot disease development on lettuce in vivo, a leaf wetness duration of at least 24 h and temperatures higher than 10°C were necessary. Leaf spot disease development in the field required several leaf wetness periods longer than 20 h at approximately 15°C at the beginning of crop cultivation. Incorporating S. birgitae infected plant debris in soil as a primary inoculum was not relevant for leaf spot disease outbreak in the next year. However, in cases of continuous cropping of lettuce on the same field and in the same season, Septoria‐infected lettuce debris may become more relevant.  相似文献   

7.
Carbonic anhydrase (CA) IX is a hypoxia inducible enzyme that is highly expressed in solid tumours. Therefore, it has been considered as an anticancer target using specific chemical inhibitors. The nitroimidazoles DTP338 and DTP348 have been shown to inhibit CA IX in nanomolar range in vitro and reduce extracellular acidification in hypoxia, and impair tumour growth. We screened these compounds for toxicity using zebrafish embryos and measured their in vivo effects on human CA IX in Xenopus oocytes. In the toxicity screening, the LD50 for both compounds was 3.5?mM. Neither compound showed apparent toxicity below 300?µM concentration. Above this concentration, both compounds altered the movement of zebrafish larvae. The IC50 was 0.14?±?0.02?µM for DTP338 and 19.26?±?1.97?µM for DTP348, suggesting that these compounds efficiently inhibit CA IX in vivo. Our results suggest that these compounds can be developed as drugs for cancer therapy.  相似文献   

8.
R. Abraham  H. König 《BioControl》1977,22(3):299-308
Zusammenfassung Bei den 2Pteromalidae Nasonia vitripennis (Walker) undSpalangia nigra latreille wird gezeigt, wie die Temperatur w?hrend des Anstichs die Zahl der abgelegten Eier beeinflusst. Die Anstichaktivit?t beginnt bei beiden Arten bei etwa 12,5°C, hat bei 25°C ihr Optimum und nimmt bis 40°C wieder ab. Bei dem Greg?rparasitenN. vitripennis ist bei 25°C in Folge gesteigerter lokomotorischer Aktivit?t die Zahl der parasitierten Puppen am h?chsten, die Zahl der Nachkommen pro Puppe jedoch niedriger als bei 20°C und 30°C. Die niedrigere Eizahl pro Puppe bei 25°C führt zu einer Verschiebung des Geschlechtsverh?ltnisses zugunsten der ♀♀. Beide Parasiten k?nnen in einem breiten Temperaturbereich anstechen. Die weite Potenz dieser plurivoltinen Arten wird als eine Anpassung an ein breites Wirtsspektrum angesehen.
Summary Experiments with the 2 PteromalidsNasonia vitripennis (Walker) andSpalangia nigra Latreille show in which way the number of eggs depends on the temperature prevalent during the stinging. The stinging activity starts at about 12,5°C, has its optimum at 25°C, has its optimum at 25°C to 30°C and decreases from 30°C to 40°C. withN. vitripennis the number of parasitized pupae is largest at 25°C the number of offsprings, however, smaller than at 20°C and 30°C. Thus at 25°C the sex ratio is changed in favour of the ♀♀. Both parasites can sting within a broad scope of temperature. This great capacity of the two plurivoltine species is regarded as an adaptation to a borad spectrum of hosts.
  相似文献   

9.
A convenient solid phase peptide synthetic (SPPS) route is reported for the preparation of antimycobacterial wollamides. The method is based on on-resin head-to-tail cyclization and is fast, efficient and amenable to automation. The in vitro antimycobacterial activities of the newly synthesized wollamides were evaluated against M. tuberculosis H37Rv (Mtb H37Rv). To assess their drug-likeness, in vitro pharmacokinetic (ADME) profiling was also performed. For wollamides with potent extracellular potency, intracellular activities and in vivo efficacy were determined. The results disclose the potent antimycobacterial (MICMtb H37Rv?=?1.1?µM) and suitable drug-like properties of wollamide A (4b). Out of the synthesized wollamides, four compounds (4be) exhibited potent intracellular activities against Mtb H37Rv infected human macrophages (IC50?=?0.2–1.3?µM). Results of in vivo blood exposure and efficacy assays for 4d and 4e are discussed.  相似文献   

10.
SUMMARY. 1. The influence of temperature on in vivo photosynthetic and in vitro respiratory electron transport system (ETS) activity was determined over the season for the 3 m (warm-water) and a 20m (cold-water) phytoplankton communities in Castle Lake. The optimum temperature of photosynthesis at 3 m (X?=20.8°C) was significantly higher than the average optimum at 20 m (X?=14.8°C). 2. Seasonally, the photosynthetic temperature optimum increased when the blue-green alga Chroococcus limneticus Lemm. was present. The temperature characteristics of this organism were maintained even after it had settled into the cold water of the hypolimnion. 3. Temperature optima were not significantly different in experiments conducted under limiting or saturating photosynthetic photon flux densities (PPFD). 4. Short-term (1 h) preincubations with dissolved inorganic nitrogen (DIN) (?80 μg NH4NO3-N l?1) had little effect on the temperature characteristics of photosynthesis while the longer (>24 h) incubations provided by a whole-lake epilimnetic DIN addition (?75 μg NH4NO3- N l?1) significantly lowered the photosynthetic temperature optimum to 12.5°C. Once this epilimnetic DIN was depleted the optimum roseto25°C, a value higher than that present before the enrichment, which coincided with the growth of C limneticus. 5. Respiratory ETS activity usually began to inactivate between 19 and 20°C. However, when C. limneticus was abundant the inactivation temperature was often greater ihan 25°C. 6. The average energy of activation (E) and Q10 value for the 3 m community (15.9 kcal mol?1 and 2.6 respectively) were significantly higher than those at 20 m (14.2 kcal mol?1 and 2.4 respectively). Seasonally, the highest E and Q10 values of ETS activity occurred during the late-summer bloom of C. limneticus. 7. These results demonstrate that the epilimnetic and hypolimnetic phytoplankton communities in Castle Lake are physiologically distinct with regards to their temperature characteristics.  相似文献   

11.
The photosynthetic performance of C4 plants is generally inferior to that of C3 species at low temperatures, but the reasons for this are unclear. The present study investigated the hypothesis that the capacity of Rubisco, which largely reflects Rubisco content, limits C4 photosynthesis at suboptimal temperatures. Photosynthetic gas exchange, chlorophyll a fluorescence, and the in vitro activity of Rubisco between 5 and 35 °C were measured to examine the nature of the low‐temperature photosynthetic performance of the co‐occurring high latitude grasses, Muhlenbergia glomerata (C4) and Calamogrostis canadensis (C3). Plants were grown under cool (14/10 °C) and warm (26/22 °C) temperature regimes to examine whether acclimation to cool temperature alters patterns of photosynthetic limitation. Low‐temperature acclimation reduced photosynthetic rates in both species. The catalytic site concentration of Rubisco was approximately 5.0 and 20 µmol m?2 in M. glomerata and C. canadensis, respectively, regardless of growth temperature. In both species, in vivo electron transport rates below the thermal optimum exceeded what was necessary to support photosynthesis. In warm‐grown C. canadensis, the photosynthesis rate below 15 °C was unaffected by a 90% reduction in O2 content, indicating photosynthetic capacity was limited by the capacity of Pi‐regeneration. By contrast, the rate of photosynthesis in C. canadensis plants grown at the cooler temperatures was stimulated 20–30% by O2 reduction, indicating the Pi‐regeneration limitation was removed during low‐temperature acclimation. In M. glomerata, in vitro Rubisco activity and gross CO2 assimilation rate were equivalent below 25 °C, indicating that the capacity of the enzyme is a major rate limiting step during C4 photosynthesis at cool temperatures.  相似文献   

12.
《Journal of bryology》2013,35(3):317-336
Abstract

(1) Temperature-net assimilation and temperature-respiration curves based on manometric measurements at high carbon dioxide concentrations are presented for twenty-three mosses and five hepatics.

(2) In most of the species, the optimum temperature for net assimilation under the experimental conditions was about 25°–30°C and the temperature compensation point about 35°–40°C.

(3) Substantially lower optima and maxima were found in Orthothecium rufescens, Plagiopus oederi, Acrocladium trifarium, Fontinalis squamosa, Nardia compressa and Hookeria lucens.

(4) Several northern and montane species (e.g. Anthelia julacea, Andreaea nivalis, Rhacomitrium lanuginosum) did not differ substantially from the majority of lowland species in the response of net assimilation to temperature. Some substantial differences were found between species of differing habitats.

(5) Most of the mosses and leafy liverworts tested withstood rapid cooling to ?5°C for 6 hr. They are evidently protected from intracellular freezing at normal rates of cooling by the withdrawal of water to form extracellular ice.

(6) Conocephalum conicum, Targionia hypophylla and Pellia epiphylla were killed by rapid cooling to ?5°C.

(7) Plagiochila spinulosa and Myurium hebridarumwithstood periods of 1–2 weeks at ?5°C. Survival of bryophytes for long periods of low temperatures appears to be principally a matter of desiccation resistance.  相似文献   

13.
The sequence cato encoding catechol 1,2-dioxygenase from Candida tropicalis JH8 was cloned, sequenced, and expressed in Escherichia coli. The sequence cato contained an ORF of 858?bp encoding a polypeptide of 285?amino acid residues. The recombinant catechol 1,2-dioxygenase exists as a homodimer structure with a subunit molecular mass of 32 KD. Recombinant catechol 1,2-dioxygenase was unstable below pH 5.0 and stable from pH 7.0 to 9.0; its optimum pH was at 7.5. The optimum temperature for the enzyme was 30°C, and it possessed a thermophilic activity within a broad temperature range. Under the optimal conditions with catechol as substrate, the Km and Vmax of recombinant catechol 1,2-dioxygenase were 9.2?µM and 0.987?µM/min, respectively. This is the first article presenting cloning and expressing in E. coli of catechol 1,2-dioxygenase from C. tropicalis and characterization of the recombinant catechol 1,2-dioxygenase.  相似文献   

14.
Photoadaptive responses in the toxic and bloom-forming dinoflagellates Gyrodinium aureolum Hulbert, Gymnodinium galatheanum Braarud, and two strains of Prorocentrum minimum (Pavillard)Schiller were evaluated with respect to pigment composition, light-harvesting characteristics, carbon and nitrogen contents, and growth rates in shade- and light-adapted cells. The two former species were grown at scalar irradiances of 30 and 170 μmol · m ?2 at a 12-h daylength at 20° C. The two strains of P. minimum were grown at 35 and 500 μmol. m?2· s?1 at a 2-h daylength at 20° C. For the first time, chlorophyll (chl) c3, characteristic of several bloom-forming prymnesiophytes, was detected in G. aureolum and G. galatheanum. Photoadaptional status affected the pigment composition strongly, and the interpretation of the variation depended on whether the pigment composition was normalized per cell, carbon, or chl a. Species-specific and photoadaptional differences in chl a-specific absorption (°ac, 400–700 nm) and chl a-normalized fluorescence excitation spectra of photosystem II fluorescence with or without addition of DCMU (°F and °FDCMU 400–700 nm) were evident. Gyrodinium aureolum and G. galatheanum exhibited in vivo spectral characteristics similar to chl c3-containing prymnesiophytes in accordance with their similar pigmentation. Prorocentrum minimum had in vivo absorption and fluorescence characteristics typical for peridinin-containing dinoflagellates. Species-specific differences in in vivo absorption were also observed as a function of package effect vs. growth irradiance. This effect could be explained by differences in intracellular pigment content, cell size/shape, and chloroplast morphology/numbers. Light- and shade-adapted cells of P. minimum contained 43 and 17% of photoprotective carotenoids (diadino + diatoxanthin) relative to chl a, respectively. The photoprotective function of these carotenoids was clearly observed as a reduction in °F and °F DCMU at 400–540 nm compared to °ac in light-adapted cells of P. minimum. Spectrally weighted light absorption (normalized to chl a and carbon, 400–700 nm) varied with species and growth conditions. The use of quantum-corrected and normalized fluorescence excitation spectra with or without DCMU-treated cells to estimate photosynthetically usable light is discussed. The usefulness of in vitro absorption and fluorescence excitation spectra for estimation of the degradation status of chl a and the ratio of chl a to total pigments is also discussed.  相似文献   

15.
Ex vivo expansion of naive primary B cells is still a challenge, yet would open new possibilities for in vitro studies of the immune response or the production of monoclonal antibodies. In our hands, unstimulated murine B cells did not expand in significant numbers, while culture viability decreased rapidly within a few days. Activation mimicking in vivo stimulation through either T cell‐independent or T‐cell dependent signaling, led to several division cycles, albeit accompanied by irreversible differentiation. By co‐culturing B cells under moderate hypothermia (30°C) on live feeder fibroblasts expressing recombinant CD40 ligand (CD154) and by repeatedly transferring cultured B cells to new feeder cell cultures, we could extend the growth of primary mouse B cells compared to cultures maintained at 37°C. B cells under these conditions showed an activated phenotype as shown by the presence of AID and IRF4, two factors required for IgH class switch recombination in antigen‐activated B cells. In contrast to cells cultured at 37°C, B cells under hyperthermia did surprisingly not differentiate into Blimp‐1 expressing plasmablasts. Thus, the repeated batch process under hyperthermic conditions represents a first step towards the development of a continuous cultivation system for the expansion of primary B cells. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:978–989, 2016  相似文献   

16.
Effects of irradiance and temperature on the Mediterranean red algae Eupogodon spinellus and Eupogodon planus were tested. Growth of both species was saturated at an irradiance of 10–20?μmol?m?2?s?1, which is in accordance with their sublittoral habitat. Eupogodon spinellus and E. planus survived permanently at temperatures between 8 and 30?°C. The temperature optimum for growth was 25?°C with suboptimal growth occurring at (10?)15 and 30?°C in both species. At their collection locality (Corsica), potential monthly growth yields would be highest in summer and in winter would be only about 20% of the maximum. Reproductive requirements could be determined only in E. planus. Gametophytes reproduced both in long and in short days but only at 20?°C. Tetrasporophytes reproduced at 15–20?°C but only in short days. Geographic distribution boundaries are not set by growth or survival limits. However, the reproductive requirements of E. planus did account for its restricted distribution in the Mediterranean and on the Canary Islands.  相似文献   

17.
Effect of plant growth regulators, explant size, season of explant collection, temperature (20, 25 and 30 °C) and photoperiod on in vitro lotus (Nelumbo nucifera Gaertn.) shoot formation and growth were examined. Shoots formation was greatly influenced by growth regulators, explant size and season of explant collection. The maximum number of shoots were induced from bud explants on Murashige and Skoog (MS) medium containing 4.44 μM benzyladenine (BA) + 0.54 μM α-naphthalene acetic acid (NAA). Explants formed by bud of one expanded and one unexpanded leaf, which was collected in spring gave encouraging results of shoot production. Higher temperature favoured shoot induction and subsequent growth was much better at 25 °C compared to that at 20 and 30 °C.  相似文献   

18.
Abstract

Endophytic fungal strains isolated from indigenous Nicotiana plants naturally growing in dry and hot regions of north-western Australia were characterised based on their tolerance to salinity and temperature. Sixty-eight fungal isolates were tested on eight levels (0.5 M, 1.0 M, 1.5 M, 2.0 M, 2.5 M, 3.0 M, 3.5 M and 4.0 M) of five different of salts solutions NaCl, KCl, MgCl2, CaCl2 and MgSO4 and at various temperatures (25–50?°C). The salt adaptation test indicated that the fungal strains namely Aspergillus niger (E-202), A. ochraceous-A (E-134), Aurantiporus sp. (E-135), Cladosporium halotolerance (E-128), Pleurostomophora richardsiae (E-13) and Trichoderma sp. (E-185.1) were tolerant to higher concentrations of various salts. The most growth-limiting salt turned out to be MgCl2 followed by the chaotrope CaCl2. Responses to temperature tolerance revealed that most fungi tested could grow at 30?°C. About 50% all the fungi did not show any growth when the temperature was raised above 30?°C. When the temperature was raised up to 50?°C all the fungi failed to grow but the fungus Rasamsonia piperina (E-172). Endophyte strains identified could be promising candidates for future research in investigating the fungus–plant interactions and their roles in plant adaptation to inhospitable environments.  相似文献   

19.
Increasing demand for efficient and environmentally benign oxidation technologies has resulted in a focus on the use of oxidoreductases. Laccases and tyrosinases, which utilize molecular oxygen and produce water as by-product, are particularly attractive. Simultaneous production of laccase and tyrosinase was studied in Neurospora crassa FGSC #321 as the fungal strain which has the ability to produce tyrosinase intracellularly while producing laccase extracellularly. Using one-variable-at-a-time experiments and a Taguchi orthogonal L9 array demonstrated that a Vogel minimal medium containing 2.5% sucrose at pH 6.5 and 25?°C with no agitation or oxygen purging were the optimum conditions for N. crassa FGSC #321 growth. Conditions were adjusted to obtain the highest laccase and tyrosinase production. Results indicate that the control mechanisms for the production of both enzymes in N. crassa FGSC #321 are similar but not necessarily identical. Results revealed that transferring the harvested cells from the growth medium into the phosphate buffer (pH 6.8, 0.1M) containing cycloheximide (2?μM) and fluorouracil (2?mM) and increasing the temperature to 30?°C were the best conditions for simultaneous production of laccase and tyrosinase (1278 and 410?U/g of biomass, respectively). Nonetheless, starvation at 35?°C is proposed as the most cost-effective means for inducing laccase. The N. crassa laccase was characterized by using its molecular weight, pI value, optimal pH and temperature and stability.  相似文献   

20.
A xylanase was removed from crude extract of the fungus Penicillium janthinellum under optimized conditions: 0.10M phosphate buffer, pH 7.0, 0.2 M BDBAC (N-benzyl-N-dodeceyl-N-bis (2-hydroxyethyl) ammonium chloride), 7.5% hexanole, 30°C and an agitation time of 1 minute. At 1.42 mg per ml protein concentration, 73% of the xylanase activity was recovered and a 7-fold enrichment factor was obtained. The enzyme had a molecular weight (MW) of 20.1 kDa and the isoelectric point (PI) revealed the presence of two protein bands with a PI of 6.0 and 6.5. The optimum pH and optimum temperature were 4.2 and 50°C, respectively. The low pH differential between the aqueous medium and the protein PI seemed to influence the xylanase transportation into the reversed micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号