首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the current study, reverse micellar extraction (RME) for the purification of stem bromelain was successfully achieved using the sodium bis(2‐ethylhexyl) sulfosuccinate (AOT)/isooctane system. A maximum forward extraction efficiency of 58.0% was obtained at 100 mM AOT concentration, aqueous phase pH of 8.0 and 0.2 M NaCl. Back extraction studies on altering stripping phase pH and KCl concentration, addition of counter‐ion and iso‐propyl alcohol (IPA) and mechanical agitation with glass beads indicated that IPA addition and agitation with glass beads have significant effects on extraction efficiency. The protein extraction was higher (51.9%) in case of the IPA (10% v/v) added system during back extraction as compared to a cetyltrimethylammonium bromide (100 mM) added system (9.42%). The central composite design technique was used to optimize the back extraction conditions further. Concentration of IPA, amount of glass beads, mixing time, and agitation speed (in rpm) were the variables selected. IPA concentration of 8.5% (v/v), glass bead concentration of 0.6 (w/v), and mixing time of 45 min at 400 rpm resulted in higher back extraction efficiency of 45.6% and activity recovery of 88.8% with purification of 3.04‐fold. The study indicated that mechanical agitation using glass beads could be used for destabilizing the reverse micelles and release of bromelain back into the fresh aqueous phase. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:845–855, 2014  相似文献   

2.
Reverse micellar extraction of lipase using cationic surfactant cetyltrimethylammonium bromide (CTAB) was investigated. The effect of various process parameters on both forward and backward extraction of lipase from crude extract was studied to optimize its yield and purity. Forward extraction of lipase was found to be maximum using Tris buffer at pH 9.0 containing 0.10 M NaCl in aqueous phase and 0.20 M CTAB in organic phase consisting of isooctane, butanol and hexanol. In case of backward extraction, lipase was extracted from the organic phase to a fresh aqueous phase in 0.05 M potassium phosphate buffer (pH 7.0) containing 1.0 M KCl. The activity recovery, extraction efficiency and purification factor of lipase were found to be 82.72%, 40.27% and 4.09-fold, respectively. The studies also indicated that the organic phase recovered after back extraction could be reused for the extraction of lipase from crude extract.  相似文献   

3.
The effect of different process variables of reverse micelle extraction process like pH, addition of surfactant (AOT) concentration and potassium chloride (KCl) concentration on amylase recovery has been studied and analysed. Solid-state fermentation was used for the production of amylase enzyme. Response surface methodology (RSM) using central composite rotatable design (CCRD) was employed to analyse and optimize the enzyme extraction process. The regression analysis indicates that the effect of AOT concentration, and KCl concentration were significant, whereas the effect of pH was non-significant on enzyme recovery. For the maximum recovery of enzyme, the optimum operating condition for pH, AOT concentration (M) and KCl concentration were 10.43, 0.05 and 1.00, respectively. Under these optimal conditions, the enzyme recovery was 83.16%.  相似文献   

4.
Phase transfer studies were conducted to evaluate the solubilization of soy hull peroxidase (SHP) in reverse micelles formed in isooctane/butanol/hexanol using the cationic surfactant cetyltrimethylammonium bromide (CTAB). The effect of various parameters such as pH, ionic strength, surfactant concentration of the initial aqueous phase for forward extraction and buffer pH, type and concentration of salt, concentration of isopropyl alcohol and volume ratio for back extraction was studied to improve the efficiency of reverse micellar extraction. The active SHP was recovered after a complete cycle of forward and back extraction. A forward extraction efficiency of 100%, back extraction efficiency of 36%, overall activity recovery of 90% and purification fold of 4.72 were obtained under optimised conditions. Anionic surfactant sodium bis (2-ethylhexyl) sulfosuccinate (AOT) did not yield good results under the conditions studied. The phase transfer of soy hull peroxidase was found to be controlled by electrostatic and hydrophobic interactions during forward and back extraction respectively.  相似文献   

5.
This work deals with the downstream processing of lipase (EC 3.1.1.3, from Aspergillus niger) using liquid emulsion membrane (LEM) containing reverse micelles for the first time. The membrane phase consisted of surfactants [cetyltrimethylammonium bromide (CTAB) and Span 80] and cosolvents (isooctane and paraffin light oil). The various process parameters for the extraction of lipase from aqueous feed were optimized to maximize activity recovery and purification fold. The mechanism of lipase transport through LEM consisted of three steps namely solubilization of lipase in reverse micelles, transportation of reverse micelles loaded with lipase through the liquid membrane, and release of the lipase into internal aqueous phase. The results showed that the optimum conditions for activity recovery (78.6%) and purification (3.14‐fold) were feed phase ionic strength 0.10 M NaCl and pH 9.0, surfactants concentration (Span 80 0.18 M and CTAB 0.1 M), volume ratio of organic phase to internal aqueous phase 0.9, ratio of membrane emulsion to feed volume 1.0, internal aqueous phase concentration 1.0 M KCl and pH 7.0, stirring speed 450 rpm, and contact time 15 min. This work indicated the feasibility of LEM for the downstream processing of lipase. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

6.
陆强  李宽宏  施亚钧   《生物工程学报》1996,12(2):158-163
由近红外光谱证实,十六烷基三甲基溴化铵(CTAB)/正己醇-正辛烷反胶束溶液是牛血清白蛋白(BSA)增溶于非极性有机溶剂的较理想中介。研究了反萃液酸度、离子强度和种类等参数对BSA反萃率的影响,过低的溶液酸度导致BSA变性。适宜的反萃液为:1.0~2.0mol/L KBr,pH4.3~4.9。蛋白质的紫外光谱表明,BSA分子在料液,反胶束溶液和反萃液中的构象大致相同。此外,探讨了反胶束溶液循环使用的效率问题。最后,通过采用适当的相比,成功地实现了蛋白质的回收和浓缩。  相似文献   

7.
In this work, the forward and back extraction of soybean protein by reverse micelles was studied. The reverse micellar systems were formed by anionic surfactant sodium bis(2-ethyl hexyl) sulfosuccinate (AOT), isooctane and KCl solution. The effects of AOT concentration, aqueous pH, KCl concentration and phase volume ratio on the extraction efficiency of soybean protein were tested. Suitability of reverse micelles of AOT and Triton-X-100/AOT mixture in organic solvent toluene for soybean protein extraction was also investigated. The experimental results lead to complete forward extraction at the AOT concentration 120 mmol l−1, aqueous pH 5.5 and KCl concentration 0.8 mol l−1. The backward extraction with aqueous phase (pH 5.5) resulted in 100% extraction of soybean protein from the organic phase.  相似文献   

8.
Downstream processing of lipase involving reverse micellar extraction of lipase using cationic surfactant cetyltrimethylammonium bromide (CTAB) was investigated. Effect of various process parameters on both forward and backward extraction of lipase from crude extract was studied to optimize its yield and purity. Complex interaction of salt concentration (0.05∼0.15M), surfactant concentration (0.10∼0.30 M), and pH (6.0∼9.0) for forward extraction, as well as, salt concentration (0.5∼1.5 M) and pH (6.0∼9.0) for backward extraction have been studied using response surface methodology. Optimum processing conditions, namely, salt concentration 0.16M, surfactant concentration 0.20 M, and pH 9.0 for forward extraction, as well as, salt concentration 0.80 M and pH 7.23 for backward extraction, fulfill the conditions to obtain activity recovery of lipase ≥78% and purification factor of lipase ≥4.0. The study demonstrated that response surface methodology can be used for optimization of the conditions for reverse micellar extraction of lipase.  相似文献   

9.
Lactic acid fermentations were performed with plastic-composite-support (PCS) disks in solvent-saturated media with Lactobacillus casei subsp. rhamnosus (ATCC 11443). The PCS disks contained 50% (w/w) polypropylene, 35% (w/w) ground soybean hulls, 5% (w/w) yeast extract, 5% (w/w) soybean flour, and 5% (w/w) bovine albumin. Bioassays were performed by growing L. casei in solvent-saturated media after soaking the PCS disks. Eighteen different solvent and carrier combinations were evaluated. Overall, L. casei biofilm fermentation demonstrated the same lactic acid production in solvent-saturated medium as suspended cells in medium without solvents (control). To evaluate PCS solvent-detoxifying properties, two bioassays were developed. When solvent-saturated medium in consecutive equal volumes (10 mL then 10 mL) was exposed to PCS, both media demonstrated lactic acid fermentation equal to the control. However, when solvent-saturated medium with two consecutive unequal volumes (10 mL then 90 mL) was exposed to PCS, some degree of toxicity was observed. Furthermore, iso-octane, tributylphosphate (TBP), and Span 80 were optimized for recovery as 91%, 5%, and 4% (v/v), respectively, with a 1:1 ratio of 1.2 M Na(2)CO(3) stripping solution. Also, recovery by emulsion liquid extraction in the hollow-fiber contactor was minimal due to low recovery at pH 5.0 and incompatibility of the solvent and hollow-fiber material. These results suggest that PCS biofilm reactors can benefit lactic acid fermentation by eliminating the toxic effect from solvent leakage into the fermentation medium from liquid-liquid extractive integrated fermentations.  相似文献   

10.
The intracellular enzymes xylose reductase (XR, EC 1.1.1.21) and xylitol dehydrogenase (XD, EC 1.1.1.9) from Candida guilliermondii, grown in sugar cane bagasse hydrolysate, were separated by reversed micelles of cetyl trimethyl ammonium bromide (CTAB) cationic surfactant. An experimental design was employed to optimize the extraction conditions of both enzymes. Under these conditions (temperature = 5 degree C, hexanol: isooctane proportion = 5% (v/v), 22 %, surfactant concentration = 0.15M, pH = 7.0 and electrical conductivity = 14 mScm(-1)) recovery values of about 100 and 80% were achieved for the enzymes XR and XD, respectively. The purity of XR and XD increased 5.6- and 1.8-fold, respectively. The extraction process caused some structural modifications in the enzymes molecules, as evidenced by the alteration of K(M) values determined before and after extraction, either in regard to the substrate (up 35% for XR and down 48% for XD) or cofactor (down 29% for XR and up 11% for XD). However, the average variation of V(max) values for both enzymes was not higher than 7%, indicating that the modified affinity of enzymes for their respective substrates and cofactors, as consequence of structural modifications suffered by them during the extraction, are compensated in some extension. This study demonstrated that liquid-liquid extraction by CTAB reversed micelles is an efficient process to separate the enzymes XR and XD present in the cell extract, and simultaneously increase the enzymatic activity and the purity of both enzymes produced by C. guilliermondii.  相似文献   

11.
This paper describes a rapid method to identify the best solvent and carrier compound combinations with the highest extraction capability and the lowest microbial toxicity characteristics for product recovery from microbial fermentation. The extraction system has an aqueous phase, and an emulsion phase, which was a blend of sodium carbonate and organic phase [91% (v/v) organic solvent, 5% (v/v or wt/v) carrier compound, and 4% (v/v) surfactant Span 80]. Alamine 336, or tri-n-octylamine in n-heptane; Alamine 336, Alamine 304, or tributyl phosphate in hexane; and Alamine 304 or tributyl phosphate in iso-octane; Alamine 304 or Amberlite in xylene demonstrated high lactic acid extraction. For determination of bacterial toxicity of selected solvent and carrier compounds, Lactobacillus casei subsp. rhamnosus (ATCC 11443) was grown in LAF medium containing one of the selected organic solvent, carrier compound, and Span 80 in 250 ml flask at 37 °C and 125 rpm. Samples were collected regularly during 48 hour incubation, and measured for changes in cell density by absorbance at 620 nm, cell count using a fluorescent dye with flow cytometry, and lactic acid, and glucose concentrations by HPLC. Hexadecane:tributyl phosphate, n-dodecane:tri-n-octylamine, and kerosene:tri-n-octylphosphine oxide demonstrated the least microbial toxicity among the tested blends with excess solvent media. Whereas, hexanes:Alamine 304 and xylenes:Alamine 304 were nontoxic in solvent saturated media.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

12.
Lectin from crude extract of small black kidney bean (Phaseolus vulgaris) was successfully extracted using the reversed micellar extraction (RME). The effects of water content of organic phase (Wo), ionic strength, pH, Aerosol-OT (AOT) concentration and extraction time on the forward extraction and the pH and ionic strength in the backward extraction were studied to optimize the extraction efficiency and purification factor. Forward extraction of lectin was found to be maximum after 15 min of contact using 50 mM AOT in organic phase with Wo 27 and 10 mM citrate-phosphate buffer at pH 5.5 containing 100 mM NaCl in the aqueous phase. Lectin was backward extracted into a fresh aqueous phase using sodium-phosphate buffer (10 mM, pH 7.0) containing 500 mM KCl. The overall yield of the process was 53.28% for protein recovery and 8.2-fold for purification factor. The efficiency of the process was confirmed by gel electrophoresis analysis.  相似文献   

13.
Cephalosporin C was extracted from diluted or whole broth by PEG/salt aqueous two-phase systems. Parameters such as PEG molecular weight, salt type, pH, and salt concentration were investigated for finding a suitable extraction system. In PEG 600/ammonium sulfate or phosphate systems, K(c) (partition coefficienct of cephalosporin C) was observed to be larger than 1, with K(d) (partition coefficient of desacetyl cephalosporin C) being smaller than 1. The particular values of these coefficients would imply that the difficult separation of cephalosporin C and desacetyl cephalosporin C could possibly be achieved via the aqueous two-phase extraction. The addition of surfactants, water-miscible solvents, and neutral salts for enhancement of the separation efficiency was also investigated. The addition of surfactants to the system did not affect the separation efficiency substantially. K(c) would increase whereas K(d) decreased as a result of the addition of acetone, MeOH, EtOH, IPA, and n-BuOH. Meanwhile both K(c) and K(d) would decrease whenever neutral salts, NaCl, KCl, Kl, or KSCN, were added. The partitioning behavior of cephalosporin C and desacetyl cephalosporin C in filtered, whole, and different batches of broth was notably quite similar to that of diluted broth. The recovery yield of cephalosporin C in whole broth extraction was observed to be a function of centrifugal force used in phase separation. (c) 1994 John Wiley & Sons, Inc.  相似文献   

14.
Proteins (bovine serum albumin (BSA), α‐chymotrypsin, cytochrome c, and lysozyme) were extracted from 0.5 to 2.0 g L?1 aqueous solution by adding an equal volume of isooctane solution that contained a surfactant mixture (Aerosol‐OT, or AOT, and a 1,3‐dioxolane (or cyclic ketal) alkyl ethoxylate, CK‐2,13‐E5.6), producing a three‐phase (Winsor‐III) microemulsion with a middle, bicontinuous microemulsion, phase highly concentrated in protein (5–13 g L?1) and small in volume (12–20% of entire volume). Greater than 90% forward extraction was achieved within a few minutes. Robust W‐III microemulsion systems were formulated at 40°C, or at 25°C by including a surfactant with shorter ethoxylate length, CK‐2,13‐E3, or 1.5% NaCl (aq). Successful forward extraction correlated with high partitioning of AOT in the middle phase (>95%). The driving force for forward extraction was mainly electrostatic attractions imposed by the anionic surfactant AOT, with the exception of BSA at high ionic strength, which interacted via hydrophobic interactions. Through use of aqueous stripping solutions of high ionic strength (5.0 wt %) and/or pH 12.0 (to negate the electrostatic attractive driving force), cytochrome c and α‐chymotrypsin were back extracted from the middle phase at >75% by mass, with the specific activity of recovered α‐chymotrypsin being >90% of its original value. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

15.
The liquid-liquid extraction of alpha-lactalbumin based on reverse micellar organic solvents was investigated. Forward extraction of the protein in the reverse micellar organic phase from aqueous feed solutions was strongly dependent on the initial pH of the feed solution and the complete forward extraction of 0.03 mM alpha-lactalbumin was successfully achieved at pH 6.0. The forward extraction percentage steeply decreased with increasing KCl concentration, while in the NaCl system the forward extraction was independent on the salt concentration below 1 M. From the circular dichroic measurement, higher order structure of the recovered alpha-lactalbumin through the extraction process was well preserved.  相似文献   

16.
We report the selective recovery of S-adenosylmethionine (SAM) from fermentation broths using a two-stage supported liquid membrane system with strip dispersion (SLM-SD). The system utilized two MiniModule® hollow-fiber membrane modules as microporous supports and an organic membrane solution consisting of the extractants of sodium di-2-ethylhexyl sulfosuccinate (AOT), di-(2-ethylhexyl)phosphoric acid (DEHPA), and trioctylphosphine oxide (TOPO) in the solvent n-octanol. SAM was extracted in the first membrane module. Methionine (Met) was captured by the first stripping solution and further purified in the second membrane module. pH values in the feed phase and the first and second stripping solutions, extractant concentrations, NaCl concentration, and the SAM acceptor in the first stripping solution were optimized. Strip dispersion mixing speed, pressure differences across the membranes, and flow rates of the feed and strip dispersion phases were investigated experimentally. The optimal extractant concentrations were: AOT 2.78 wt%, DEHPA 27.0 wt%, and TOPO 1.61 wt%. The optimal pH values in the feed phase and the first and second stripping solution were 3.0, 2.5, and 1.0, respectively. SAM extraction efficiency of 98.7%, SAM recovery efficiency of 91.8% and Met removal efficiency of 85.4% were achieved within 5 h. Finally, the mass transfer analysis indicated that the mass transfer resistances from the extraction reaction and the membrane phase were predominant.  相似文献   

17.
The elution characteristics of lovastatin were studied by varying the composition of mobile phase in both isocratic and gradient elution modes to comprehend the role of organic modifier and acidifier on the overall analysis time and retention time of individual forms of lovastatin. Acetonitrile has influenced on the overall analysis time, whereas the acidifier determines the retention time of hydroxy acid form of lovastatin and the retention time gap between the individual forms. A combination of acetonitrile and 0.1% trifluoroacetic acid (TFA) (60:40, v/v) in isocratic elution mode eluted both hydroxy acid and lactone forms of lovastatin at 4.5 and 5.4?min, respectively. This appears to be a better approach for the separation of pharmaceutical and clinical lovastatin samples. At isocratic elution mode, a mixture of acetonitrile and either 0.05% TFA or 0.1% H3PO4 of 60:40 (v/v) has eluted both hydroxy acid and lactone forms of lovastatin at 10?±?0.5 and 17?±?0.5?min, respectively. This is suitable for the fermentation-derived samples or for the complex mixtures of structural analogs. The fermentation broth (pH not adjusted) extracted with ethyl acetate at a ratio of 1:1 (v/v) at 60°C for 30?min was the optimal extraction condition for lovastatin.  相似文献   

18.
Zhang T  Liu H  Chen J 《Biotechnology progress》1999,15(6):1078-1082
Affinity Cibacron Blue 3GA (CB) dye in aqueous phase was directly transferred to the reversed micelles due to electrostatic interaction between anionic CB and cationic cetyltrimethylammonium bromide (CTAB). The bovine serum albumin (BSA) transfer to the reverse micelles increases significantly in a wide range of pH by the addition of a small amount of CB ( approximately 1.0-7.0% of the total surfactant concentration) to the aqueous phase. For pH < pI, the selectivity can be significantly improved with the presence of affinity CB because no BSA was extracted in the absence of CB. For backward extraction of BSA from the micellar phase with stripping aqueous solution, the addition of 2-propanol to the aqueous phase can recover almost all BSA (98.5%) extracted into the reverse micelles.  相似文献   

19.
Our earlier work for the first time demonstrated that liquid emulsion membrane (LEM) containing reverse micelles could be successfully used for the downstream processing of lipase from Aspergillus niger. In the present work, we have attempted to increase the extraction and purification fold of lipase by using mixed reverse micelles (MRM) consisting of cationic and nonionic surfactants in LEM. It was basically prepared by addition of the internal aqueous phase solution to the organic phase followed by the redispersion of the emulsion in the feed phase containing enzyme, which resulted in globules of water‐oil‐water (WOW) emulsion for the extraction of lipase. The optimum conditions for maximum lipase recovery (100%) and purification fold (17.0‐fold) were CTAB concentration 0.075 M, Tween 80 concentration 0.012 M, at stirring speed of 500 rpm, contact time 15 min, internal aqueous phase pH 7, feed pH 9, KCl concentration 1 M, NaCl concentration 0.1 M, and ratio of membrane emulsion to feed volume 1:1. Incorporation of the nonionic surfactant (e.g., Tween 80) resulted in remarkable improvement in the purification fold (3.1–17.0) of the lipase. LEM containing a mixture of nonionic and cationic surfactants can be successfully used for the enhancement in the activity recovery and purification fold during downstream processing of enzymes/proteins. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1084–1092, 2014  相似文献   

20.
Abstract

Box–Behnken Design (BBD) was used to optimize the extraction conditions of polyphenols from Malva (Malva parviflora L.) leaves. The effect of ethanol concentration (20–80%), solvent/leaf powder ratio (10:1 to 30:1, v/w) and extraction time (5–45?min) on the polyphenols yield and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of the obtained extracts were investigated. Quadratic models fit well. The optimal conditions (53.40% ethanol, solvent/leaf powder ratio 20:1 (v/w), and 15?min) resulted in an extract with a maximum yield of polyphenols (1098.4?mg GAE/100?g leaf powder) and high inhibition percentage of DPPH radical (33.31%) with desirability 0.742. High Performance Liquid Chromatography (HPLC) analysis indicated that the major identified polyphenol compounds extracted at the optimal conditions were naringenin, ρ-coumaric acid, apigenin-7-glucoside, luteolin, and cinnamic acid. These findings indicate that M. parviflora leaf extracts possess DPPH radical scavenging activity and could be used as a natural source for bioactive products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号