共查询到20条相似文献,搜索用时 0 毫秒
1.
Elena Costariol Marco Rotondi Arman Amini Christopher J. Hewitt Alvin W. Nienow Thomas R.J. Heathman Martina Micheletti Qasim A. Rafiq 《Biotechnology and bioengineering》2019,116(10):2488-2502
Advanced cell and gene therapies such as chimeric antigen receptor T-cell immunotherapies (CAR-T), present a novel therapeutic modality for the treatment of acute and chronic conditions including acute lymphoblastic leukemia and non-Hodgkin lymphoma. However, the development of such immunotherapies requires the manufacture of large numbers of T-cells, which remains a major translational and commercial bottleneck due to the manual, small-scale, and often static culturing systems used for their production. Such systems are used because there is an unsubstantiated concern that primary T-cells are shear sensitive, or prefer static conditions, and therefore do not grow as effectively in more scalable, agitated systems, such as stirred-tank bioreactors, as compared with T-flasks and culture bags. In this study, we demonstrate that not only T-cells can be cultivated in an automated stirred-tank bioreactor system (ambr® 250), but that their growth is consistently and significantly better than that in T-flask static culture, with equivalent cell quality. Moreover, we demonstrate that at progressively higher agitation rates over the range studied here, and thereby, higher specific power inputs (P/M W kg−1), the higher the final viable T-cell density; that is, a cell density of 4.65 ± 0.24 × 106 viable cells ml−1 obtained at the highest P/M of 74 × 10−4 W kg−1 in comparison with 0.91 ± 0.07 × 106 viable cells ml−1 at the lowest P/M of 3.1 × 10−4 W kg−1. We posit that this improvement is due to the inability at the lower agitation rates to effectively suspend the Dynabeads®, which are required to activate the T-cells; and that contact between them is improved at the higher agitation rates. Importantly, from the data obtained, there is no indication that T-cells prefer being grown under static conditions or are sensitive to fluid dynamic stresses within a stirred-tank bioreactor system at the agitation speeds investigated. Indeed, the opposite has proven to be the case, whereby, the cells grow better under higher agitation speeds while maintaining their quality. This study is the first demonstration of primary T-cell ex vivo manufacture activated by Dynabeads® in an automated stirred-tank bioreactor system such as the ambr® 250 and the findings have the potential to be applied to multiple other cell candidates for advanced therapy applications. 相似文献
2.
Photolithotrophic cultivation of Laminaria saccharina gametophyte cells in a stirred-tank bioreactor 总被引:4,自引:0,他引:4
Filamentous cell cultures derived from female gametophytes of the temperate brown macroalga Laminaria saccharina were photolithotrophically cultivated in artificial seawater medium within an illuminated 1.3-L stirred-tank bioreactor at 13 degrees C using CO(2) in air as the carbon source. A Monod model adequately described light-saturated growth. The apparent half-saturation constant (K(o)) was 23 muE/m(2)-s, and maximum specific growth rate was 0.15 day(-1). At a constant inoculation cell density of 50 mg DCW/L, biomass productivity after 26 days of cultivation increased from 630 mg DCW/L at 18 muE/m(2)-s to 890 mg DCW/L at 228 muE/m(2)-s. At 98 muE/m(2)-s, 1.1 vvm aeration rate, and 250 rpm impeller speed, the CO(2) transfer rates (CO(2) TRs) and CO(2) consumption rates (r(co(2) )) were determined over the cultivation period. At peak CO(2) demand, the maximum CO(2) TR was 0.19 mmol CO(2)/L-h, but r(co(2) ) was only 0.15 mmol CO(2)/L-h, implying that the culture was not CO(2) transport limited. This is the first reported bioreactor cultivation study of cell cultures derived from a macrophytic marine alga. (c) 1995 John Wiley & Sons, Inc. 相似文献
3.
《Biocatalysis and Biotransformation》2013,31(3):173-187
AbstractWe report the optimization of production of a halotolerant, thermoalkaline protease by Bacillus cereus SIU1, at shake-flask and bench-scale bioreactor level, using conventional and response surface methods. The basal medium supplemented with optimized (w/v) 0.8% glucose, 1.5% peptone, and 0.4% yeast extract produced 224 Uml? 1 alkaline protease after 20 h incubation. Enzyme yield was further increased to 491 Uml? 1 when the fermentation broth was supplemented with 0.02% (w/v) Ca2+. Optimization of physical factors resulted in still higher protease level of 651 Uml? 1 within 18 h fermentation at initial pH 9.0, 50°C, and 150 rpm agitation. Statistically designed experiments revealed significant effects of peptone and CaCl2 on protease production. A maximum of 749 protease Uml? 1 was produced at optimum factor levels (w/v) of peptone 1.75%, yeast extract 0.4%, CaCl2 0.025%, and pH 9.0 after 18 h incubation. Optimization of agitation and aeration rates in bench-scale bioreactors further enhanced the enzyme yield to 941 protease Uml? 1 at 125 rpm and 2.0 vvm aeration. Optimization of protease production by conventional and statistical approaches resulted in a ~10.7-fold increase (941 Uml? 1) compared to un-optimized conditions (88 Uml? 1). 相似文献
4.
Three dimensional particle tracking velocimetry (3-D PTV) was used to characterize the flow fields in the impeller region of three microcarrier reactor vessels. Three typical cell culture bioreactors were chosen: 250 ml small-scale spinner vessels, 3 L bench-scale reactor, and 20 L medium-scale reactor. Conditions studied correspond to the actual operating conditions in industrial setting and were determined based on the current scale-up paradigm: the Kolmogorov eddy length criterion. In this paper we present characterization of hydrodynamics on the basis of flow structures produced because of agitation. Flow structures were determined from 3-D mean velocity results obtained using 3-D PTV. Although the impellers used in 3 L and 20 L reactors were almost identical, the flow structures produced in the two reactors differed considerably. Results indicate that near geometric scale up does not necessarily amount to scale-up of flow patterns and indicates that intensity as well as distribution of energy may vary considerably during such a scale-up. 相似文献
5.
Garima Chaudhary Robin Luo Meena George Lia Tescione Anurag Khetan Henry Lin 《Biotechnology and bioengineering》2020,117(6):1684-1695
There are three main potential sources for cell shear damage existing in stirred tank bioreactors. One is the potential high energy dissipation in the immediate impeller zones; another from small gas bubble burst; and third is from high gas entrance velocity (GEV) emitting from the sparger. While the first two have been thoroughly addressed for the scale-up of Chinese hamster ovary (CHO) cell culture knowing that a wide tolerable agitation range with non-damaging energy dissipation exists and the use of shear protectants like Pluronic F68 guard against cell damage caused by bubble burst, GEV remains a potential scale-up problem across scales for the drilled hole or open pipe sparger designs. GEV as high as 170 m/s due to high gas flow rates and relatively small sparger hole diameters was observed to be significantly detrimental to cell culture performance in a 12,000 L bioreactor when compared to a satellite 2 L bioreactor run with GEV of <1 m/s. Small scale study of GEV as high as 265 m/s confirmed this. Based on the results of this study, a critical GEV of >60 m/s for CHO cells is proposed, whereas previously 30 m/s has been reported for NS0 cells by Zhu, Cuenca, Zhou, and Varma (2008. Biotechnol. Bioeng., 101, 751–760). Implementation of new large scale spargers with larger diameter and more holes lowered GEV and helped improve the cell culture performance, closing the scale-up gap. Design of such new spargers was even more critical when hole plugging was discovered during large scale cultivation hence exacerbating the GEV impact. Furthermore, development of a scale down model based on mimicry of the large scale GEV profile as a function of time was proven to be beneficial for reproducing large scale results. 相似文献
6.
Optimization of a bioreactor design can be an especially challenging process. For instance, testing different bioreactor vessel geometries and different impeller and sparger types, locations, and dimensions can lead to an exceedingly large number of configurations and necessary experiments. Computational fluid dynamics (CFD), therefore, has been widely used to model multiphase flow in stirred-tank bioreactors to minimize the number of optimization experiments. In this study, a multiphase CFD model with population balance equations are used to model gas–liquid mixing, as well as gas bubble distribution, in a 50 L single-use bioreactor vessel. The vessel is the larger chamber in an early prototype of a multichamber bioreactor for mammalian cell culture. The model results are validated with oxygen mass transfer coefficient (kLa) measurements within the prototype. The validated model is projected to predict the effect of using ring or pipe spargers of different sizes and the effect of varying the impeller diameter on kLa. The simulations show that ring spargers result in a superior kLa compared to pipe spargers, with an optimum sparger-to-impeller diameter ratio of 0.8. In addition, larger impellers are shown to improve kLa. A correlation of kLa is presented as a function of both the reactor geometry (i.e., sparger-to-impeller diameter ratio and impeller-to-vessel diameter ratio) and operating conditions (i.e., Reynolds number and gas flow rate). The resulting correlation can be used to predict kLa in a bioreactor and to optimize its design, geometry, and operating conditions. 相似文献
7.
Wiseman A 《Biotechnology letters》2003,25(19):1581-1590
Both immobilized enzymes (IME) and immobilized cells (IMC) are acceptable as the biocatalysts essential for the attainment of rapid rates of bioconversion in bioreactors. IMC can display higher than expected cellular permeability whilst IME can exhibit high catalytic constant (kcat/Km) despite limitations on substrate utilisation due to an unstired diffusion layer of solvent. Scale-down switching from IMC to IME involves the replacement of high-volume biotechnology by low-volume biotechnology, sometimes using IME mimics in partially non-aqueous solvent systems. Highly purified IME systems covalently immobilised to particles of, for instance, microcrystalline cellulose or porous glass, can retain both the hydrophilic and hydrophobic intermediate products in situ of the chosen sequence of enzyme reactions. These bioconversions, therefore, are as efficient as those with IMC where enzymes are often particle- or membrane-bound so that even hydrophilic intermediates are not released rapidly into solution. This mimicry of in vivo biosynthetic pathways that are compartmentalised in vivo (e.g. of lysosomes, mitochondria and endoplasmic reticulum) can replace larger IMC by IME especially in application of up to 2700 cytochromes P450 isoforms in bioprocessing. In silico investigation of appropriate model IME systems, in comparison with IMC systems, will be needed to define the optimal bioreactor configuration and parameters of operation, such as pH, T and oxygen mass transfer rate (OTR). The application solely of hazop (applied hazard and operability concepts) may, nevertheless, not be recommended to replace fully the in silico and real-lab pilot-scale and scale studies. Here, food-safe bioprocessing has to be achieved without incorporation of recognised biohazards; especially in the form of unacceptable levels of toxic metals that promote a risk-analysis uncertainty. 相似文献
8.
Tomohiro Doi Hideyuki Kajihara Yasuo Chuman Shinobu Kuwae Takashi Kaminagayoshi Takeshi Omasa 《Biotechnology progress》2020,36(5):e3000
Herein, we described a scale-up strategy focused on the dissolved carbon dioxide concentration (dCO2) during fed-batch cultivation of Chinese hamster ovary cells. A fed-batch culture process for a 2000-L scale stainless steel (SS) bioreactor was scaled-up from similarly shaped 200-L scale bioreactors based on power input per unit volume (P/V). However, during the 2000-L fed-batch culture, the dCO2 was higher compared with the 200-L scale bioreactor. Therefore, we developed an alternative approach by evaluating the kLa values of O2 (kLa[O2]) and CO2 [kLa(CO2)] in the SS bioreactors as a scale-up factor for dCO2 reduction. The kLa ratios [kLa(CO2)/kLa(O2)] were different between the 200-L and 2000-L bioreactors under the same P/V condition. When the agitation conditions were changed, the kLa ratio of the 2000-L scale bioreactor became similar and the P/V value become smaller compared with those of the 200-L SS bioreactor. The dCO2 trends in fed-batch cultures performed in 2000-L scale bioreactors under the modified agitation conditions were similar to the control. This kLa ratio method was used for process development in single-use bioreactors (SUBs) with shapes different from those of the SS bioreactor. The kLa ratios for the SUBs were evaluated and conditions that provided kLa ratios similar to the 200-L scale SS bioreactors were determined. The cell culture performance and product quality at the end of the cultivation process were comparable for all tested SUBs. Therefore, we concluded that the kLa ratio is a powerful scale-up factor useful to control dCO2 during fed-batch cultures. 相似文献
9.
10.
Tramper J 《Cytotechnology》1995,18(1-2):27-34
An estimation is made of oxygen gradients in animal-cell bioreactors, using straightforward engineering calculations. Three types of bioreactor are considered: stirred vessel, bubble column and air lift, of sizes between 0.01 and 10 m3. First, the gradient is estimated in the stagnant layer surrounding a cell (15 m), a microcarrier (185 m) with 300 cells attached to it, a macroporous support (1.25 mm) containing 185,00 cells and one (6 mm) containing 4.25 million cells. It is assumed that oxygen consumption is 10–16 mole O2·cell–1·s–1, while mass transfer coefficients are obtained from Sherwood relations. Circulation and liquid-retention times of the bioreactors are compared with the oxygen-exhaust times of suspensions with 1012, 1013 and 1014 cells/m3 to estimate if oxygen gradients are likely to exist in the bulk-liquid phase. Finally, the gradient in the liquid film surrounding air bubbles is estimated using k
l
A-values obtained from empirical correlations. It is clear from all these estimations that in many situations severe gradients can be expected. The question remains, however, whether gradients should be avoided as much as possible, or may be tolerated to a certain extent or even created on purpose because of possible beneficial effects. 相似文献
11.
Abdullah M.A. Ariff A.B. Marziah M. Ali A.M. Lajis N.H. 《Plant Cell, Tissue and Organ Culture》2000,60(3):205-212
Strategies to overcome foaming and wall-growth during the cultivation of Morinda elliptica (Rubiaceae) cell suspension cultures in a stirred-tank bioreactor are described. Of all the strategies applied, only bubble-free
aeration was successful in eliminating foaming by 100%. Despite the foaming effect of around 40% in G medium strategy with
0.012% (v/v) antifoam, the maximum dry cell weight attained (19.2 g l-1) and anthraquinone (AQ) content (4.0 mg g-1 DW) was nearly three times higher than that achieved in cultivation using 0.025% (v/v) antifoam. For continuous cell growth,
the effect of inoculum age should also be considered when anti-foam is to be added. P medium strategy, without antifoam addition,
not only promoted both growth (18 g l-1) and AQ production (9.8 mg g-1 DW), but also resulted in lower foaming and wall-growth (below 30% level), and higher foaming reduction (30–40%).
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
12.
Alba López-Fernández;Víctor Garcia-Gragera;Martí Lecina;Joaquim Vives; 《Biotechnology journal》2024,19(2):2300381
Cell therapies based on multipotent mesenchymal stromal cells (MSCs) are traditionally produced using 2D culture systems and platelet lysate- or serum-containing media (SCM). Although cost-effective for single-dose autologous treatments, this approach is not suitable for larger scale manufacturing (e.g., multiple-dose autologous or allogeneic therapies with banked MSCs); automated, scalable and Good Manufacturing Practices (GMP)-compliant platforms are urgently needed. The feasibility of transitioning was evaluated from an established Wharton's jelly MSCs (WJ-MSCs) 2D production strategy to a new one with stirred-tank bioreactors (STRs). Experimental conditions included four GMP-compliant xeno- and serum-free media (XSFM) screened in 2D conditions and two GMP-grade microcarriers assessed in 0.25 L-STRs using SCM. From the screening, a XSFM was selected and compared against SCM using the best-performing microcarrier. It was observed that SCM outperformed the 2D-selected medium in STRs, reinforcing the importance of 2D-to-3D transition studies before translation into clinical production settings. It was also found that attachment efficiency and microcarrier colonization were essential to attain higher fold expansions, and were therefore defined as critical process parameters. Nevertheless, WJ-MSCs were readily expanded in STRs with both media, preserving critical quality attributes in terms of identity, viability and differentiation potency, and yielding up to 1.47 × 109 cells in a real-scale 2.4-L batch. 相似文献
13.
Ajmalicine production by cell cultures of Catharanthus roseus: from shake flask to bioreactor 总被引:2,自引:0,他引:2
Hens J. G. ten Hoopen Walter M. van Gulik Jurriaan E. Schlatmann Paulo R. H. Moreno J. L. Vinke J. J. Heijnen Robert Verpoorte 《Plant Cell, Tissue and Organ Culture》1994,38(2-3):85-91
The productivity of a cell culture for the production of a secondary metabolite is defined by three factors: specific growth rate, specific product formation rate, and biomass concentration during production. The effect of scaling-up from shake flask to bioreactor on growth and production and the effect of increasing the biomass concentration were investigated for the production of ajmalicine by Catharanthus roseus cell suspensions. Growth of biomass was not affected by the type of culture vessel. Growth, carbohydrate storage, glucose and oxygen consumption, and the carbon dioxide production could be predicted rather well by a structured model with the internal phosphate and the external glucose concentration as the controlling factors. The production of ajmalicine on production medium in a shake flask was not reproduced in a bioreactor. The production could be restored by creating a gas regime in the bioreactor comparable to that in a shake flask. Increasing the biomass concentration both in a shake flask and in a stirred fermenter decreased the ajmalicine production rate. This effect could be removed partly by controlling the oxygen concentration in the more dense culture at 85% air saturation. 相似文献
14.
The purpose of this work was to develop a practical scale-up model for a solvent-based pan-coating process. Practical scale-up
rules to determine the key parameters (pan load, pan speed, spray rate, air flow) required to control the process are proposed.
The proposed scale-up rules are based on a macroscopic evaluation of the coating process. Implementation of these rules does
not require complex experimentation or prediction of model parameters. The proposed scale-up rules were tested by conducting
coating scale-up and scale-down experiments on 24-inch and 52-inch Vector Hi-coaters. The data demonstrate that using these
rules led to similar cumulative drug release profiles (f2≫50; and P Analysis of Variance [P
ANOVA]≫0.05 for cumulative percentage of drug released after 12 hours [Cum 12] from tablets made at 24- and 52-inch scales. Membrane
characteristics such as opacity and roughness were also similar across the 2 scales. The effects of the key process variables
on coat weight uniformity and membrane characteristics were also studied. Pan speed was found to be the most significant factor
related to coating uniformity. Spray droplet size was found to affect the membrane roughness significantly, whereas opacity
was affected by the drying capacity. 相似文献
15.
Hairy root cultures have demonstrated great promise in terms of their biosynthetic capability toward the production of secondary metabolites, but continue to constitute a major challenge with regard to large-scale cultures. In order to assess the possibility of conducting mass production of biomass, and the extraction of useful metabolites fromPanax ginseng. P. ginseng hairy roots, transformed byRhizobium rhizogenes KCTC 2744, were used in bioreactors of different types and sizes. The most effective mass production of hairy roots was achieved in several differently sized air bubble bioreactors compared to all other bioreactor types. Hairy root growth was enhanced by aeration, and the production increased with increasing aeration rate in a 1 L bioreactor culture. It was determined that the hairy root growth rate could be substantially enhanced by increases in the aeration rate upto 0.5 wm, but at aeration rates above 0.5 wm, only slight promotions in growth rates were observed. In 20 L air bubble bioreactors, with a variety of inoculum sizes, the hairy roots exhibited the most robust growth rates with an inoculum size of 0.1% (w/v), within the range 0.1 to 0.7% (w/v). The specific growth rates of the hairy roots decreased with increases in the inoculum size. 相似文献
16.
This is the first demonstration of process scale-up of a membrane gradostat reactor for continuous enzyme production using Phanerochaete chrysosporium ME446. The fungus was immobilised by reverse filtration on to externally unskinned, ultrafiltration capillary membranes and then nutrient gradients were induced across the biofilm. A 10-fold scale-up from a single capillary bioreactor to a 2.4 l multi-capillary unit resulted in a 7-fold increase in enzyme productivity with a peak at 209 U l–1 d–1. Subsequent scale effects on the spore distribution, continuous manganese peroxidase production profile and biofilm development are discussed. 相似文献
17.
Naringenin, a natural plant flavonoid found in citrus fruits, has been reported to exhibit a wide range of pharmacological functions, including anticancer, antioxidant, antiatherogenic, antithrombotic, and vasodilator activities. Naringenin can be produced from the naringinase (NGase)-catalyzed enzymatic hydrolysis of naringin. However, the poor solubility of naringin in aqueous systems considerably limits the efficiency of naringenin biocatalysis. In this work, a novel substrate adsorption system was proposed for naringin adsorption to increase the efficiency of naringin hydrolysis and naringenin production. Three Amberlite macroporous resins, namely, XAD-4, XAD-7HP and XAD-16, were investigated for their naringin adsorption capacities and effects on NGase hydrolysis. Results indicated that the physical properties of the resins played a critical role in naringin adsorption and naringenin enzymatic synthesis. Naringin hydrolysis was carried out using free and adsorbed substrates. The substrate adsorption strategy could increase the catalytic efficiency at a high naringin concentration. In addition, the reaction conditions for enzymatic naringenin synthesis were optimized, and naringenin was prepared at a liter scale with a high substrate concentration. These results suggested that substrate adsorption is a promising strategy to increase the enzymatic hydrolysis efficiency of naringenin in aqueous systems. 相似文献
18.
The production and storage of energy from renewable resources steadily increases in importance. One opportunity is to utilize carbon dioxide (CO2)-type hydrogenotrophic methanogens, which are an intriguing group of microorganisms from the domain Archaea, for conversion of hydrogen and CO2 to methane (CH4). This review summarizes the current state of the art of bioprocess development for biological CH4 production (BMP) from pure cultures with pure gasses. The prerequisites for successful quantification of BMP by using closed batch, as well as fed-batch and chemostat culture cultivation, are presented. This review shows that BMP is currently a much underexplored field of bioprocess development, which mainly focuses on the application of continuously stirred tank reactors. However, some promising alternatives, such as membrane reactors have already been adapted for BMP. Moreover, industrial-based scale-up of BMP to pilot scale and larger has not been conducted. Most crucial parameters have been found to be those, which influence gas-limitation fundamentals, or parameters that contribute to the complex effects that arise during medium development for scale-up of BMP bioprocesses, highly stressing the importance of holistic BMP quantification by the application of well-defined physiological parameters. The much underexplored number of different genera, which is mainly limited to Methanothermobacter spp., offers the possibility of additional scientific and bioprocess development endeavors for the investigation of BMP. This indicates the large potential for future bioprocess development considering the possible application of bioprocessing technological aspects for renewable energy storage and power generation. 相似文献
19.
Naringinase plays a rather important role in reducing the bitterness of juice by hydrolyzing naringin. A novel extracellular naringinase was purified from Aspergillus oryzae 11250 cultured in the presence of orange peel. A 26.78-fold purification rate was achieved by salt-induced precipitation, followed by anion-exchange and gel filtration chromatography with 32% recovery and specific activity of 2194.62 units per mg protein (U/mg). The optimum pH and temperature for naringinase activity were 5.0 and 45 °C, respectively. This enzyme was stable at 30 °C for 5 h. The Km and Vmax of naringinase toward naringin determined by Lineweaver-Burk method were 1.60 ± 0.13 mM and 126.21 ± 5.52 μmol/(min mg), respectively. The enzyme activity was inhibited completely by Ag+ at 10 mM. Naringinase is capable of hydrolyzing naringin, neohesperidin, and some other glycosides. A supplement of 6 U/mL of this naringinase in citrus juice sufficiently removed naringin to relieve the bitterness of citrus juice. These properties make the enzyme an ideal candidate for commercial application in the debitterization of orange juice. 相似文献
20.
【目的】建立采用3,5-二硝基水杨酸(DNS)法快速测定柚皮苷水解率的方法,并利用该方法对柚苷酶催化水解柚皮苷生成柚皮素的反应过程进行优化研究。【方法】利用棘孢曲霉JMUdb058发酵得到的柚苷酶催化水解柚皮苷,采用DNS法对柚皮苷酶解过程中还原糖的生成量进行分析,经过换算得到柚皮苷的水解率,并在此基础上通过单因素实验优化柚皮苷的酶解过程。【结果】在柚皮苷的水解过程中,还原糖的生成量与柚皮苷的水解量及柚皮素的生成量均呈现出良好的线性关系,因此可利用DNS法测定体系中还原糖的生成量,并通过换算得到柚皮素的生成量。利用该方法优化柚皮苷的酶解过程得到柚苷酶转化柚皮苷的最适温度为50°C、pH为5.0、酶用量为8 U/mL、底物浓度为0.2 g/100 mL。在此条件下,柚皮苷酶解150 min后可达到平衡,此时其水解率为85%。通过Lineweaver-Burk双倒数作图法测得Km为 相似文献