首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study explores a novel concept of coproduction of uricase and alkaline protease by Bacillus licheniformis using single substrate in single step. Seven local bacterial strains were screened for uricase production, amongst which B. licheniformis is found to produce highest uricase along with alkaline protease. Optimization of various factors influencing maximum enzyme coproduction by B. licheniformis is performed. Maximum enzyme productivity of 0.386?U/mL uricase and 0.507?U/mL alkaline protease is obtained at 8?hr of incubation period, 1% (v/v) inoculum, and at 0.2% (w/v) uric acid when the organism is cultivated at 25°C, 180?rpm, in a media containing xylose as a carbon source, urea as a nitrogen source, and initial pH of 9.5. The statistical experimental design method of Box–Behnken was further applied to obtain optimal concentration of significant parameters such as pH (9.5), uric acid concentration (0.1%), and urea concentration (0.05%). The maximum uricase and alkaline protease production by B. licheniformis using Box–Behnken design was 0.616 and 0.582?U/mL, respectively, with 1.6- and 1.13-fold increase as compared to one factor at a time optimized media. This study will be useful to develop an economic, commercially viable, and scalable process for simultaneous production of uricase and protease enzymes.  相似文献   

2.
Uricase (urate: oxygen oxidoreductase, EC 1.7.3.3), an enzyme belonging to the class of oxidoreductases, catalyzes the enzymatic oxidation of uric acid to allantoin and finds a wide variety of application as therapeutic and clinical reagent. In this study, uricase production ability of the bacterial strains isolated from deep litter poultry soil is investigated. The strain with maximum extracellular uricase production capability was identified as Xanthomonas fuscans subsp. aurantifolii based on 16S rRNA sequencing. Effect of various carbon and nitrogen sources on uricase productivity was investigated. The uricase production for this strain was optimized using statistically based experimental designs and resulted in uricase activity of 306 U/L, which is 2 times higher than initial uricase activity. Two-step purification, such as ammonium sulfate precipitation and aqueous two-phase system, was carried out and a twofold increase in yield and specific activity was observed.  相似文献   

3.
A novel uricase-producing bacterium was identified based on its 16S rRNA sequence as Bacillus thermocatenulatus. The kinetic constants for this uricase, determined with uric acid as the substrate, were a V(max) of 0.99U/ml of enzyme and a K(m) of 0.25mM. After heat treatment at 75 degrees C for 45min, the uricase retained about 100% of its initial activity. The uric acid showed to be an inducer for uricase production. The effects of different factors on the enzyme production were studied. Pretreated cane molasses and corn steep liquor were the most promising carbon and nitrogen sources, respectively. When the strain was cultured at 30 degrees C at pH 7.0 for 30-36h, the uricase activity peaked at 1.25U/ml.  相似文献   

4.
The objective of this study was to evaluate the production of pectinase by an isolated strain of Penicillium brasilianum in a bioreactor and to consider its potential for industrial applications (i.e. fruit juice). The optimization of production was achieved through experimental design. The maximum exo-polygalacturonase (Exo-PG) production in the bioreactor was 53.8?U mL?1 under the conditions of 180?rpm, an aeration rate of 1.5 vvm, 30?°C, pHinitial of 5.5, 5?×?106 spores mL?1, 32?g L?1 pectin, 10?g L?1 of yeast extract and 0.5?g L?1 magnesium sulfate and bioproduction for 36?h. The production of Exo-PG in the bioreactor was 1.3 times higher than that obtained in shake flasks, with aeration (1.5 vvm) and agitation (180?rpm) control. The crude enzyme complex, beyond the pectinolytic activity of Exo-PG (53.8?U mL?1), also contained activity pectin methylesterase (6.0?U mL?1) and pectin lyase (6.61?U mL?1). At a crude enzyme complex with a concentration of 0.5% (v/v), viscosity of peach juice was reduced by 11.66%, turbidity was reduced by 13.71% and clarification was increased by 26.92%. Based on the present results, we can conclude that the new strain of isolated P. brasilianum produced high amounts of pectinases in a bioreactor with mechanical agitation, and has the potential to be applied to in the clarification of juices.  相似文献   

5.
Summary One hundred and sixty-five strains of microorganisms with the ability to grow in a medium containing uric acid as a major source of nitrogen were isolated from soil samples during a screening program. Among them, a zygomycete fungus with well-developed columellae was recognized to produce high levels of the enzyme in a short time. Classification of the isolated fungus was carried out according to the morphological and culture characteristics of the organism, and it was identified as Mucor hiemalis. The fungus was able to produce an intracellular urate oxidase in a fermentation medium mainly containing uric acid. Optimized composition of the medium consisted of (l−1 of distilled water) uric acid, 7.0 g; maltose, 6.0 g; Vogel stock solution, 20 and 1 ml of 0.5 M copper sulphate. The optimum pH and temperature for uricase production in the optimized medium were pH 6 and 30 °C, respectively.  相似文献   

6.
A uricase-producing bacterium was isolated from soil with a medium containing uric acid as the only carbon source. Based on its morphological and physiological characteristics, as well as 16S rDNA sequence and phylogenetic tree analysis, this new isolate belong to the genus Microbacterium. After heat treatment at 70 °C for 30 min, the uricase retained about 100% of the initial activity. The enzyme activity remained largely unchanged when it was stored in borate buffer at pH 8.5 at 37 °C for 40 days. The effects of different factors on the enzyme production were studied. Maize milk was the best C and N resources, and the uric acid showed to be an inducer for uricase production. When the strain was cultured at 30 °C at pH 7.5 for 30–36 h, the uricase activity peaked at 1.0 U/ml.  相似文献   

7.
Uricase activity was found in Enterobacter cloacae KY3074 grown on guanine, hypoxanthine, uric acid, and xanthine media. The enzyme was purified from cells grown on uric acid as a source of nitrogen. The purification procedure included ammonium sulfate fractionation, gel filtration on Sephadex G-150, and column chromatography on DEAE-cellulose and DEAE-Sephadex. The enzyme had a molecular weight of about 105,000 and was specific for uric acid. The optimum pH was around 9.5, and the activity was inhibited by the presence of potassium cyanide, Ag+ or Cu2+. This uricase can be used for estimation of uric acid.  相似文献   

8.
In course of searching for proteolytic microbes from the gut of Gryllotalpa africana, a potent isolate GAP 12.4 was screened and identified as Kitasatospora cheerisanensis having protease activity 46.8?±?1.52?U/ml. Optimum conditions for the protease production (605.3?±?9.7?U/ml) were 7-d cultivation, 5% inoculum, pH 9.5, 55?°C, 150?rpm, and supplementation with 0.8% glucose and 0.6% ammonium sulfate. Surfactants such as SDS, EDTA, Tween 80 and Triton X-100 showed positive effect on enzyme production. Addition of biotin (50?μg/ml) promotes enzyme production maximally (674.15?±?4.13?U/ml). Further enhancement on addition of casein hydrolysate and molasses to the production medium was 709.20?±?7.53?U/ml and 744.26?±?9.71?U/ml, respectively. The isolate was also able to utilize agro-industries waste, green gram husk in solid-state fermentation for enzyme production (1675.02?±?21.58?U/ml). This thermo-alkaliphilic isolate may be a potent candidate for low cost protease production through management of agro-residues. It is the first report of protease production by a member of actinobacteria under the Kitasatospora genus.  相似文献   

9.
Alkaline pectin lyase finds applications in the degumming and retting of plant fibres, textile industry and pectic wastewater treatment where it degrades highly methylesterified pectin without prior action of any other pectinase. Response surface methodology (RSM) has been frequently utilized for the optimization of production process of industrially important enzymes from microbes. In the present work, fermentation conditions for the production of pectin lyase from Bacillus cereus were optimized using the factorial and central composite design of RSM. The cubic order polynomial regression model was found to be adequate and significant with a determination coefficient R2 of 0.9505 (p?相似文献   

10.
Abstract

A novel tannase and gallic acid-producing Penicillium rolfsii (CCMB 714) was isolated from cocoa leaves from the South of Bahia. The influence of nutritional sources and the simultaneous effect of parameters involved in the fermentation process were available. Tannase (9.97 U?mL?1) and gallic acid (9?mg mL?1) production were obtained in 48?h by submerged fermentation in non-optimized conditions. Among the carbon sources, tested gallic acid and tannic acid showed the highest tannase production (p<.05) when compared with methyl gallate and glucose. After optimization using the temperature and tannic acid concentration as variables with the Central Compound Rotational Design (CCRD), the maximal tannase production (25.6?U mL?1) was obtained at 29.8?°C and 12.7%, respectively, which represents an increase of 2.56 times in relation to the initial activity. The parameters optimized for the maximum production of gallic acid (21.51?mg mL?1) were 30?°C and 10% tannic acid. P. rolfsii CCMB 714 is a new strain with a high tannase and gallic acid production and the gallic acid produced is very important, mainly for its applications in the food and pharmaceutical industry.  相似文献   

11.

Introduction

Uric acid released from injured tissue is considered a major endogenous danger signal and local instillation of uric acid crystals induces acute lung inflammation via activation of the NLRP3 inflammasome. Ventilator-induced lung injury (VILI) is mediated by the NLRP3 inflammasome and increased uric acid levels in lung lavage fluid are reported. We studied levels in human lung injury and the contribution of uric acid in experimental VILI.

Methods

Uric acid levels in lung lavage fluid of patients with acute lung injury (ALI) were determined. In a different cohort of cardiac surgery patients, uric acid levels were correlated with pulmonary leakage index. In a mouse model of VILI the effect of allopurinol (inhibits uric acid synthesis) and uricase (degrades uric acid) pre-treatment on neutrophil influx, up-regulation of adhesion molecules, pulmonary and systemic cytokine levels, lung pathology, and regulation of receptors involved in the recognition of uric acid was studied. In addition, total protein and immunoglobulin M in lung lavage fluid and pulmonary wet/dry ratios were measured as markers of alveolar barrier dysfunction.

Results

Uric acid levels increased in ALI patients. In cardiac surgery patients, elevated levels correlated significantly with the pulmonary leakage index. Allopurinol or uricase treatment did not reduce ventilator-induced inflammation, IκB-α degradation, or up-regulation of NLRP3, Toll-like receptor 2, and Toll-like receptor 4 gene expression in mice. Alveolar barrier dysfunction was attenuated which was most pronounced in mice pre-treated with allopurinol: both treatment strategies reduced wet/dry ratio, allopurinol also lowered total protein and immunoglobulin M levels.

Conclusions

Local uric acid levels increase in patients with ALI. In mice, allopurinol and uricase attenuate ventilator-induced alveolar barrier dysfunction.  相似文献   

12.
Abstract

In the present study, culture conditions of Streptococcus equi was optimized through Box–Behnken experimental design for hyaluronic acid production. About 0.87?gL?1 of hyaluronic acid was produced under the determined conditions and optimal conditions were found as 38.42?°C, 24?hr and 250?rpm. The validity and practicability of this statistical optimization strategy were confirmed relation between predicted and experimental values. The hyaluronic acid obtained under optimal conditions was characterized. The effects of different conditions such as ultraviolet light, temperature and enzymatic degradation on hyaluronic acid produced under optimal conditions were determined. 118?°C for 32?min of autoclaved HA sample included 63.09 µg mL?1 of d-glucuronic acid, which is about two-fold of enzymatic effect. Cytotoxicity of hyaluronic acid on human dermal cells (HUVEC, HaCaT), L929 and THP-1 cells was studied. In vitro effect on pro or anti-inflammatory cytokine release of THP-1 cells was determined. Although it varies depending on the concentration, cytotoxicity of hyaluronic acid is between 5 and 30%. However, it varies depending on the concentration of hyaluronic acid, TNF-α release was not much increased compared to control study. Consequently, purification procedure is necessary to develop and it is worth developing the bacterial hyaluronic acid.  相似文献   

13.
Uricase (urate oxidase EC 1.7.3.3) is a therapeutic enzyme that is widely used to catalyze the enzymatic oxidation of uric acid in the treatment of hyperuricemia and gout diseases. In this study, three bacterial species capable of producing extracellular uricase were isolated from a poultry source and screened based on the size of the clear zone using a uric acid agar plate. The bacterial species capable of producing uricase with the highest uricolytic activity was identified as Bacillus cereus strain DL3 using a 16SrRNA gene sequencing approach. The time-course study of uricase production was performed and the medium was optimized. Carboxymethylcellulose and asparagine were found to be the best carbon and nitrogen sources. Maximum uricolytic activity was observed at pH 7.0 with an inducer concentration of 2.0 g/L. Inoculum size of 5% gave maximum uricolytic activity. The maximum uricolytic activity of 15.43 U/mL was achieved at optimized conditions, which is 1.61 times more than the initial activity. Further, enzymatic stability was determined at different pH and temperature.  相似文献   

14.
Allantoxanamide (2,4-dihydroxy-6-carboxamide-1,3,5-triazine) was studied as a uricase inhibitor in the rat. Uricase activity in vitro was inhibited 50% by allantoxanamide at 9 × 10- M concentration. A single 250 mg/kg i.p. dose in the rat gave rise to a serum uric acid level of 14 mg/dl 6 hr after dosing; serum uric acid was still elevated (10 mg/dl) after 24 hr. At this dose level, deposition of uric acid in kidney tubules was observed. Studies with [8-14 C] uric acid indicated that the effect of allantoxanamide on serum uric acid was due to inhibition of uricase. The allantoxanamide-treated rat may serve as a useful animal model for the study of problems related to purine biosynthesis, drug-induced hyperuricemia and hyperuricosuria, and associated nephropathy.  相似文献   

15.
This study aims to find the optimal medium and conditions for polylactic acid (PLA)-degrading enzyme production by Amycolatopsis sp. SCM_MK2-4. Screening of the most effective components in the enzyme production medium by Plackett–Burman design revealed that the silk cocoon and PLA film were the most significant variables enhancing the PLA-degrading enzyme production. After an response surface methodology, a maximum amount of PLA-degrading enzyme activity at 0.74?U?mL?1 was predicted and successfully validated at 95% after 0.39% (w/v) silk cocoon and 1.62% (w/v) PLA film were applied to the basal medium. The optimal initial pH value, temperature, and inoculum size were evaluated by a method considering one-factor-at-a-time. The values were recorded at an initial pH in the range of 7.5–9.0, a temperature of 30–32°C, and an inoculum size of 4–10%. The highest activity of approximately 0.95?U?mL?1 was achieved after 4 days of cultivation using the optimized medium and under optimized conditions in a shake flask. Upscaling to the use of a 3-L stirred tank fermenter was found to be successful with a PLA-degrading activity of 5.53?U?mL?1; which represents a 51-fold increase in the activity compared with that obtained from the nonoptimized medium and conditions in the shake flask.  相似文献   

16.
In this study, the effects of carbon source, nitrogen source, and metal ions on cell growth and Bacillus aryabhattai β-amylase production in recombinant Brevibacillus choshinensis were investigated. The optimal medium for β-amylase production, containing glucose (7.5?g·L?1), pig bone peptone (40.0?g·L?1), Mg2+ (0.05?mol·L?1), and trace metal elements, was determined through single-factor experiments in shake flasks. When cultured in the optimized medium, the β-amylase yield reached 925.4?U mL?1, which was 7.2-fold higher than that obtained in the initial medium. Besides, a modified feeding strategy was proposed and applied in a 3-L fermentor fed with glucose, which achieved a dry cell weight of 15.4?g L?1. Through this cultivation approached 30?°C with 0?g·L?1 initial glucose concentration, the maximum β-amylase activity reached 5371.8?U mL?1, which was 41.7-fold higher than that obtained with the initial medium in shake flask.  相似文献   

17.
Production of uricase (urate oxidase, EC 1.7.3.3) by n-alkane-utilizing Candida tropicalis pK233 was studied. Although the yeast showed very low enzyme productivity under growing conditions on glucose or an n-alkane mixture (C10 to C13) (less than 2 U/g of dry cells), enzyme formation was enhanced markedly in an induction medium consisting of potassium phosphate buffer, MgSO4, uric acid, and an n-alkane mixture (47 U/g of dry cells) or glucose (21 U/g of dry cells). Of the carbon sources tested, the n-alkane mixture was the most suitable for enzyme production. Appropriate aeration also stimulated uricase formation. In addition to uric acid, xanthine, guanine, adenine, and hypoxanthine were also effective for inducing uricase. Under optimum conditions, the maximum yield of the enzyme was 91 U/g of dry cells. Uricase thus induced was localized in the microbodies of the yeast.  相似文献   

18.
Production of uricase (urate oxidase, EC 1.7.3.3) by n-alkane-utilizing Candida tropicalis pK233 was studied. Although the yeast showed very low enzyme productivity under growing conditions on glucose or an n-alkane mixture (C10 to C13) (less than 2 U/g of dry cells), enzyme formation was enhanced markedly in an induction medium consisting of potassium phosphate buffer, MgSO4, uric acid, and an n-alkane mixture (47 U/g of dry cells) or glucose (21 U/g of dry cells). Of the carbon sources tested, the n-alkane mixture was the most suitable for enzyme production. Appropriate aeration also stimulated uricase formation. In addition to uric acid, xanthine, guanine, adenine, and hypoxanthine were also effective for inducing uricase. Under optimum conditions, the maximum yield of the enzyme was 91 U/g of dry cells. Uricase thus induced was localized in the microbodies of the yeast.  相似文献   

19.
Abstract

We report the optimization of production of a halotolerant, thermoalkaline protease by Bacillus cereus SIU1, at shake-flask and bench-scale bioreactor level, using conventional and response surface methods. The basal medium supplemented with optimized (w/v) 0.8% glucose, 1.5% peptone, and 0.4% yeast extract produced 224 Uml? 1 alkaline protease after 20 h incubation. Enzyme yield was further increased to 491 Uml? 1 when the fermentation broth was supplemented with 0.02% (w/v) Ca2+. Optimization of physical factors resulted in still higher protease level of 651 Uml? 1 within 18 h fermentation at initial pH 9.0, 50°C, and 150 rpm agitation. Statistically designed experiments revealed significant effects of peptone and CaCl2 on protease production. A maximum of 749 protease Uml? 1 was produced at optimum factor levels (w/v) of peptone 1.75%, yeast extract 0.4%, CaCl2 0.025%, and pH 9.0 after 18 h incubation. Optimization of agitation and aeration rates in bench-scale bioreactors further enhanced the enzyme yield to 941 protease Uml? 1 at 125 rpm and 2.0 vvm aeration. Optimization of protease production by conventional and statistical approaches resulted in a ~10.7-fold increase (941 Uml? 1) compared to un-optimized conditions (88 Uml? 1).  相似文献   

20.
Allantoic acid production from IMP, XMP, inosine, xanthosine, hypoxanthine, xanthine, uric acid and allantoin was investigated by incubating each of these substrates withCajanus cajan cytosol and bacteroid fractions separately in the presence and absence of NAD+ and allopurinol. Allantoic acid synthesis by bacteroid fraction could only be observed with uric acid and allantoin as substrates. Addition of NAD+ or allopurinol to the reaction mixtures had no effect. However, with cytosol fraction, allantoic acid was produced by each of these substrates, with maximum rate with allantoin. With NAD+ or with allopurinol, allantoic acid was produced only with uric acid and allantoin as substrates. NADH production with cytosol fraction could again be observed with all the substrates. Except with uric acid and allantoin, allopurinol completely inhibited NADH formation. Regardless of the presence or absence of allopurinol, none of the substrates exhibited significant activity with bacteroid fraction. Based on the activities of glutamine synthetase, glutamate synthase, glutamate dehydrogenase, aspartate aminotransferase, asparagine synthetase, nucleotidase, nucleosidase, xanthine de-hydrogenase, uricase and allantoinase and their intracellular localisation in various nodule fractions, a probable pathway for the biogenesis of ureides in pigeonpea nodules has been proposed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号